
Thread-modular Abstraction Refinement?

Thomas A. Henzinger1, Ranjit Jhala1, Rupak Majumdar1, and Shaz Qadeer2

1 University of California, Berkeley
2 Microsoft Research, Redmond

Abstract. We present an algorithm called Tar (“Thread-modular Ab-
straction Refinement”) for model checking safety properties of concur-
rent software. The Tar algorithm uses thread-modular assume-guarantee
reasoning to overcome the exponential complexity in the control state of
multithreaded programs. Thread modularity means that Tar explores
the state space of one thread at a time, making assumptions about how
the environment can interfere. The Tar algorithm uses counterexample-
guided predicate-abstraction refinement to overcome the usually infinite
complexity in the data state of C programs. A successive approxima-
tion scheme automatically infers the necessary precision on data vari-
ables as well as suitable environment assumptions. The scheme is novel
in that transition relations are approximated from above, while at the
same time environment assumptions are approximated from below. In
our software verification tool Blast we have implemented a fully au-
tomatic race checker for multithreaded C programs which is based on
the Tar algorithm. This tool has verified a wide variety of commonly
used locking idioms, including locking schemes that are not amenable to
existing dynamic and static race checkers such as Eraser or Warlock.

1 Introduction

Many model-checking tools for software analysis fall into two categories. The
first category of tools, pioneered by Spin [15], relies on the user-guided rep-
resentation of a program as an abstract model, which is then checked for the
desired properties. Several tools in this category support model extraction from
code [7, 13, 16, 21], but they still rely on the user to define the granularity of the
abstraction. The second category of tools, pioneered by Slam [4], automatically
refines an extracted model to the necessary precision. While highly successful,
both approaches have their limitations. The Slam approach is fully automatic
but, so far, has been limited to sequential programs. This is unfortunate, because
the traditional strength of model checking lies in the analysis of concurrent sys-
tems, such as multithreaded programs, in which errors are notoriously difficult
to reproduce. The Spin approach is well-suited for concurrency but relies on the
insights of the user to find appropriate abstractions. This is also unfortunate,
because the other traditional strength of model checking is its “push-button”
? This work was supported in part by the NSF grants CCR-0085949 and CCR-0234690,

the DARPA grant F33615-00-C-1693, and the MARCO grant 98-DT-660.

characteristics, which in the realm of hardware verification has enabled the rou-
tine application of model-checking tools. We present an algorithm and tool that
for the first time uses fully automatic abstraction refinement on concurrent,
multithreaded programs.

The first ingredient of our algorithm is thread-modular assume-guarantee rea-
soning. The main source of complexity in multithreaded programs is the inter-
action between threads that operate on shared data. A model checker must
analyze all possible interleavings of the actions of the various threads, result-
ing in the dreaded state-explosion problem. One method for controlling state
explosion is thread-modular reasoning, first proposed by Jones [17] and first im-
plemented in the Calvin checker [9, 11] for multithreaded Java programs. To
check a 2-threaded program T1||T2, Calvin allows the programmer to specify
suitable abstractions G1 and G2 for the transition relations T1 of thread 1 and
T2 of thread 2, and then separately analyzes T1||G2 and G1||T2. This reasoning is
“thread-modular” if the abstractions G1 and G2 constrain only the shared vari-
ables, and consequently the analyzed systems T1||G2 and G1||T2 each depend on
the private variables of at most one thread. The abstraction G2 is an environ-
ment assumption for thread 1, and G1 constrains the environment of thread 2.
Thread-modular reasoning, therefore, is a form of assume-guarantee reasoning
[1, 2], which is sound for safety properties:

If no error states are reachable in T1||G2 nor in G1||T2, and T1||G2 ⊆ G1

and G1||T2 ⊆ G2, then no error states are reachable in T1||T2. (AG)

While thread-modular reasoning is not complete for safety properties [18], it suf-
fices for establishing the safety of many concurrency-control mechanisms com-
monly used in multithreaded programming [9]. The main obstacle to thread-
modular reasoning is the annotation burden involved in specifying the envi-
ronment assumptions G1 and G2. Although these assumptions can be inferred
automatically for finite-state systems [10], in the presence of unbounded data
they have to be supplied manually for tools such as Calvin.

This limitation motivates the second ingredient of our algorithm,
counterexample-guided predicate-abstraction refinement. Many relations between
data values are irrelevant for the task of proving a desired property, but in gen-
eral it is difficult to divine the relevant relations (“predicates” [12]). Indeed, the
process of manually finding a suitable abstract model, which is neither too de-
tailed to choke the model checker nor too coarse to invalidate the specification,
often dominates the verification effort. This process has been automated by the
abstract-check-refine paradigm [3, 6]: one starts with a very coarse abstraction,
and if the model checker finds an abstract error trace that has no concrete coun-
terpart, then one uses that trace to automatically refine the abstraction, and
repeats the process. In particular, a theorem prover can be used to automati-
cally discover predicates that rule out spurious counterexamples and thus are
good candidates for abstraction refinement [14]. This approach to automatic ab-
straction refinement has been very successful for sequential programs [4], but
has its problems when dealing with concurrency. Suppose that we try to find ap-
propriate abstractions of the two thread transition relations T1 and T2, as well

as abstractions of the two environment assumptions G1 and G2, by iteratively
approximating all four relations from above until condition (AG) holds. We will
see in Section 2 that this approximation scheme fails in many cases of practical
interest: even if suitable thread-modular assumptions G1 and G2 exist, one may
end up with approximations t1 ⊇ T1, t2 ⊇ T2, g1 ⊇ t1||g2, and g2 ⊇ g1||t2 such
that error states are reachable in t1||g2 or g1||t2, but no new predicates on the
shared variables can be discovered to remove these error traces. We overcome
this hurdle by approximating environment assumptions from below, rather than
above. The algorithm Tar (“Thread-modular Abstraction Refinement”) oper-
ates with approximations of four relations: t1 ⊇ T1 and t2 ⊇ T2 are traditional
overapproximations of the two thread transition relations, and are successively
refined by the addition of new predicates. The approximations g1 and g2 of
the environment assumptions, however, start out empty (which corresponds to
there being no environment) and are successively weakened until g1 ⊇ t1||g2

and g2 ⊇ g1||t2. By interleaving the strengthening of the ti relations and the
weakening of the gi relations in an appropriate way, we can prove that if envi-
ronment assumptions G1 and G2 that satisfy condition (AG) exist, then they
will be found in the limit, that is, on finite state spaces they are guaranteed to
be found in a finite number of iterations. In other words, the Tar algorithm
provides a sound combination of thread-modular assume-guarantee reasoning
and counterexample-guided abstraction refinement which, in the case of finite-
state systems, is also complete in the sense that thread-modular environment
assumptions are found if they exist.

We have implemented the Tar algorithm in the model checker Blast [14],
which was originally designed for the verification of sequential C programs.
Blast deals with all aspects of C, such as function calls, structures, and pointer
aliasing, and uses an on-the-fly algorithm for integrated reachability analysis
and predicate discovery (“lazy abstraction”). The Tar extension of Blast is
targeted to find data races in multithreaded C programs. Unlike much of the ex-
position in this paper, which considers for simplicity only two threads, the tool
deals with any number of concurrent threads. Data races are states in which
either two different threads update a shared data variable (as opposed to a lock
variable), or one thread updates and another thread reads the variable. Race
detection can therefore be formulated as a safety verification problem. We have
focused on race detection for two reasons. First, race checking requires no code
annotations or specifications from the user, and is therefore particularly appeal-
ing to practicioners. Second, the absence of race conditions is a prerequisite for
establishing a variety of more complicated correctness requirements.

Section 2 presents the Tar algorithm in a generic setting, together with
soundness and termination (completeness) arguments. Section 3 develops a ver-
sion of the algorithm in the specific setting of race detection for multithreaded
C programs. It gives a producer-consumer example for which the Tar algorithm
proves the absence of race conditions, whereas all existing race checkers avail-
able to us, both dynamic (“lockset”-based) [19] and static (“type”-based) [5, 8,
20], report false positives. Section 4 briefly discusses the implementation of the

Tar algorithm in Blast. Section 5 summarizes our experience with the tool.
We have applied the race checker with success to a number of examples that
capture a variety of synchronization idioms commonly used in operating sys-
tems and databases, including schemes where the same variable is protected at
different times by different locks, which again lie outside the scope of applica-
bility of existing race checkers. We have used Blast to check several thousand
lines of multithreaded C code, such as Linux and Windows device drivers, and
have verified the absence of race conditions. In the case of one Windows driver,
a race was found, and although benign, its inspection led to the discovery of a
real concurrency error in the code.

2 A Thread-modular Abstraction Refinement Algorithm

Thread-modular reasoning. A 2-threaded program Π = (Q,Q0, T1, T2, E)
consists of the following components. The state space has the form Q = S ×
P1 × P2, where S is the shared state space, and Pi is the private state space
of thread i, for i = 1, 2. We write Qi = S × Pi for the state space of thread i.
There is a set Q0 ⊆ Q of initial states, a transition relation Ti ⊆ Q2

i for each
thread i, and a set E ⊆ Q of error states. Given a relation t ⊆ Q2, a t-trace
q0, q1, . . . , qn is a finite sequence of states qj ∈ Q such that (1) q0 ∈ Q0 and
(2) (qj , qj+1) ∈ t for all 0 ≤ j < n. A state q ∈ Q is t-reachable iff there is a
t-trace whose last state is q. We write R(t) for the set of t-reachable states. Given
two relations t1 ⊆ Q2

1 and t2 ⊆ Q2
2, the interleaving (t1||t2) ⊆ Q2 is the relation

defined by ((s, p1, p2), (s′, p′1, p
′
2)) ∈ (t1||t2) iff either ((s, p1), (s′, p′1)) ∈ t1 and

p2 = p′2, or ((s, p2), (s′, p′2)) ∈ t2 and p1 = p′1. We write σ[ti] ⊆ Q2
i for the relation

defined by ((s, pi), (s′, p′i)) ∈ σ[ti] iff ((s, p̂i), (s′, p̂′i)) ∈ ti for some private states
p̂i, p̂

′
i ∈ Pi. The relation σ[ti] ⊇ ti on the state space of thread i conforms with

ti on the shared state, but updates the private state in arbitrary ways. We write
ρi[t1, t2] ⊆ Q2

i for the relation defined by ((s, p), (s′, p′)) ∈ ρi[t1, t2] iff there is
some state (s, p1, p2) that is (t1||t2)-reachable and ((s, p1), (s′, p′1)) ∈ ti for some
p′1. The relation ρi[t1, t2] is the restriction of σ[ti] to the (t1||t2)-reachable states.

The program Π is safe iff R(T1||T2) ∩ E = ∅. Safety means that there
is no (T1||T2)-trace that ends in an error state. The program Π is safe in a
strongly thread-modular way iff R(T1||σ[T2]) ∩ R(σ[T1]||T2) ∩ E = ∅. Strongly
thread-modular safety means that there are no (T1||σ[T2])- and (σ[T1]||T2)-traces
that end in the same error state. In the strongly thread-modular case, suitable
thread-modular environment assumptions σ[Ti] can be obtained noninductively,
by existential quantification of the private variables of thread i. The general
thread-modular case permits stronger environment assumptions, which may be
obtained inductively by taking into account reachability information. Formally,
the program Π is safe in a thread-modular way [9] iff there are environment
assumptions G1 and G2 such that G1 ⊇ ρ1[T1, G2] and G2 ⊇ ρ2[G1, T2] and
R(T1||G2) ∩ R(G1||T2) ∩ E = ∅. If a program is safe in a thread-modular way,
then it can be proved without considering the product transition relation T1||T2;

it suffices to reason about thread 1 together with an environment assumption
about thread 2 that concerns only the shared state, and vice versa.
Proposition 1a. Every program that is safe in a strongly thread-modular way
is safe in a thread-modular way. Every program that is safe in a thread-modular
way is safe. 2

Proposition 1b. There is a program that is safe but not in a thread-modular
way. There is a program that is safe in a thread-modular way but not in a
strongly thread-modular way. 2

The second part of Proposition 1a follows by circular assume-guarantee reason-
ing [2]. For Proposition 1b, the existence of a program that is safe but not in a
thread-modular way follows from the incompleteness of thread-modular reason-
ing [10]. The following example shows a program that is safe in a thread-modular
way but not in a strongly thread-modular way.
Example 1. Consider a 2-threaded program with shared variables m and x,
both initially 0. The variable m represents a lock; its value is 0 if no thread
holds the lock, and i if thread i holds it. Thread i executes the following code:

while (1) do { acquire(m); x=i; release(m); }

We model the program counter of thread i by a private variable pci initialized
to 0. The transition relation Ti of thread i is

(pci = 0 ∧ pc′i = 1 ∧m′ = m ∧ x′ = x) ∨ (pci = 1 ∧m = 0 ∧ pc′i = 2 ∧m′ = 1 ∧ x′ = x)
∨ (pci = 2 ∧ pc′i = 3 ∧m′ = m ∧ x′ = i) ∨ (pci = 3 ∧ pc′i = 0 ∧m′ = 0 ∧ x′ = x).

The error states E are those in which a data race occurs: pc1 = 2∧ pc2 = 2. For
i = 1, 2:

σ[Ti] : (m′ = m ∧ x′ = x) ∨ (m = 0 ∧m′ = i ∧ x′ = x) ∨
(m′ = m ∧ x′ = i) ∨ (m′ = 0 ∧ x′ = x)

ρi[T1, T2] : (m 6= i ∧m′ = m ∧ x′ = x) ∨ (m = 0 ∧m′ = i ∧ x′ = x) ∨
(m = i ∧m′ = m ∧ x′ = i) ∨ (m = i ∧m′ = 0 ∧ x = i ∧ x′ = x)

The error state pc1 = 2 ∧ x = 0 ∧ m = 0 ∧ pc2 = 2 is reachable by the tran-
sition sequences T1, T1, σ[T2] and T2, T2, σ[T1]; hence the program is not safe
in a strongly thread-modular way. However, the program is safe in a thread-
modular way, because the extra conjuncts in the last clauses of ρ1[T1, T2] and
ρ2[T1, T2] ensure that all states in R(T1||ρ2[T1, T2]) with pc1 = 2 have m = 1,
and all states in R(ρ1[T1, T2]||T2) with pc2 = 2 have m = 2, thus making the
intersection empty. 2

Abstraction refinement. To establish the correctness and termination of our
algorithm, we treat abstraction refinement as a black box (oracle). A refinement
function Θ is given two relations (t1, t2) ⊆ Q2

1 ×Q2
2 such that (1) either T1 ⊆ t1

and T2 ⊂ t2, or T1 ⊂ t1 and T2 ⊆ t2, and (2) there are (t1||σ[t2])- and (σ[t1]||t2)-
traces that end in error states, but none of them is a (T1||T2)-trace. The function
Θ returns a pair (r1, r2) ⊆ Q2

1 × Q2
2 of relations such that (1) Ti ⊆ ri ⊆ ti for

i = 1, 2, and (2) either r1 ⊂ t1 or r2 ⊂ t2. Our implementation of Θ will look

at the reasons why the abstract counterexamples (i.e., traces to error states)
cannot be concretized, and will add new predicates that rule out some abstract
counterexamples by removing at least one transition from t1 or t2, thus obtaining
the new, refined abstract transition relations r1 and r2.

Naive abstraction refinement. Abstraction refinement usually proceeds from a
very coarse overapproximation of the transition relations, which are successively
refined until either all abstract counterexamples are ruled out, or a concrete
counterexample is found. In our setting, this can be accomplished by the fol-
lowing algorithm.

Algorithm A. Initially ti := Q2
i for i = 1, 2. Loop:

If R(t1||t2) ∩ E = ∅, then return “safe.” If some (t1||t2)-trace that ends
in an error state is a (T1||T2)-trace, then return “unsafe.” Let (t1, t2) :=
Θ(t1, t2).

Algorithm A computes with relations on the product space S × P1 × P2. A
thread-modular algorithm computes only with relations on S × P1 and S × P2.
Algorithm B is a thread-modular version of A. It uses overapproximations ti
of Ti, and also thread-modular environment assumptions gi ⊆ Q2

i , for i = 1, 2.

Algorithm B. Initially ti := Q2
i and gi := Q2

i for i = 1, 2. Loop:

If R(t1||g2) ∩ R(g1||t2) ∩ E = ∅, then return “safe.” If some (t1||g2)- or
(g1||t2)-trace that ends in an error state is also a (T1||T2)-trace, then
return “unsafe.” If (t1, t2) = (T1, T2), then return “don’t know.” Let
(t1, t2) := Θ(t1, t2) and let (g1, g2) := (σ[t1], σ[t2]).

Proposition 2a. If Algorithm B returns “safe,” then the program is safe in a
strongly thread-modular way. If Algorithm B returns “unsafe,” then the program
is not safe. 2

Proposition 2b. If the state space Q is finite, then Algorithm B terminates. If
additionally, the program is safe in a strongly thread-modular way, then Algo-
rithm B terminates returning “safe.” 2

In other words, Algorithm B succeeds exactly for the (finite-state) programs
that are safe in a strongly thread-modular way; if the state space is finite, but
the program is not safe in a strongly thread-modular way, then the algorithm
always terminates with either “unsafe” or “don’t know.” Unfortunately, as Ex-
ample 1 showed, standard locking schemes are not strongly thread-modular. In
particular, Algorithm B terminates with “don’t know” on Example 1. To find
the environment assumptions for programs that are thread-modular but not in
a strong way, such as Example 1, we need to use a different approach.

Thread-modular abstraction refinement. The correctness and termination of Al-
gorithms A and B were straightforward to prove, because both transition re-
lations (t1 and t2) and both environment assumptions (g1 and g2) were ap-
proximated from above. The following algorithm approximates the transition

Iteration 1
t1 : (pc1 = 0 ∧ pc′1 = 1) ∨ (pc1 = 1 ∧ pc′1 = 2) ∨ (pc1 = 2 ∧ pc′1 = 3) ∨ (pc1 = 3 ∧ pc′1 = 0)
t2 : (pc2 = 0 ∧ pc′2 = 1) ∨ (pc2 = 1 ∧ pc′2 = 2) ∨ (pc2 = 2 ∧ pc′2 = 3) ∨ (pc2 = 3 ∧ pc′2 = 0)
g1 : false, g2 : false

Iteration 2
t1 : (pc1 = 0 ∧ pc′1 = 1 ∧m′ = m) ∨ (pc1 = 1 ∧ pc′1 = 2 ∧m = 0 ∧m′ = 1) ∨

(pc1 = 2 ∧ pc′1 = 3 ∧m′ = m) ∨ (pc1 = 3 ∧ pc′1 = 0 ∧m′ = 0)
t2 : (pc2 = 0 ∧ pc′2 = 1 ∧m′ = m) ∨ (pc2 = 1 ∧ pc′2 = 2 ∧m = 0 ∧m′ = 2) ∨

(pc2 = 2 ∧ pc′2 = 3 ∧m′ = m) ∨ (pc2 = 3 ∧ pc′2 = 0 ∧m′ = 0)
g1 : false, g2 : false

Iteration 3
t1, t2 : same as in iteration 2
g1 : (m′ = m) ∨ (m = 0 ∧m′ = 1) ∨ (m = 1 ∧m′ = 0)
g2 : (m′ = m) ∨ (m = 0 ∧m′ = 2) ∨ (m = 2 ∧m′ = 0)

Table 1. Running Algorithm Tar on Example 1.

relations from above, but approximates the environment assumptions from be-
low, and stops with success only once the successively coarsened environment
assumptions move above the successively refined transition relations.
Algorithm Tar. Initially ti := Q2

i and gi := ∅ for i = 1, 2. Loop:

If R(t1||g2) ∩ R(g1||t2) ∩ E = ∅ and ρ1[t1, g2] ⊆ g1 and ρ2[g1, t2] ⊆ g2,
then return “safe.” If some (t1||g2)- or (g1||t2)-trace that ends in an
error state is also a (T1||T2)-trace, then return “unsafe.” If R(t1||g2) ∩
R(g1||t2) ∩ E = ∅, then let (g1, g2) := (ρ1[t1, g2], ρ2[g1, t2]); otherwise, if
(t1, t2) = (T1, T2), then return “don’t know,” else let (t1, t2) := Θ(t1, t2)
and (g1, g2) := (∅, ∅).

Theorem 3a. If Algorithm Tar returns “safe,” then the program is safe in a
thread-modular way. If Algorithm Tar returns “unsafe,” then the program is
not safe. 2

This is proved by circular assume-guarantee reasoning, because the environment
assumption of each thread must be discharged against the abstract (overapprox-
imate) transition relation of the other thread.
Theorem 3b. If the state space Q is finite, then Algorithm Tar terminates. If
additionally, the program is safe in a thread-modular way, then Algorithm Tar

terminates returning “safe.” 2

In other words, Algorithm Tar succeeds exactly for the (finite-state) programs
that are safe in a thread-modular way. It automatically finds suitable thread-
modular environment assumptions, provided they exist. If the state space is finite
but the program is not safe in a thread-modular way, then the algorithm always
terminates with either “unsafe” or “don’t know.”
Algorithm Tar on Example 1. The initial abstraction contains the pro-
gram counter of each thread (predicates of the form pci = 1, pci = 2, etc.).

The resulting existential overapproximations of T1 and T2 are t1 and t2. In
this abstraction, the error state pc1 = 2 ∧ x = 0 ∧ m = 0 ∧ pc2 = 2 is
reachable. The counterexample analysis reveals that we should track the pred-
icates m = 0, m = 1, and m = 2 (note that m′ = m is shorthand for
(m = 0⇒ m′ = 0) ∧ (m = 1⇒ m′ = 1) ∧ (m = 2⇒ m′ = 2)). At the end of it-
eration 2, there is no counterexample, because R(t1||g2) ∩ R(g1||t2) ∩ E = ∅.
However, the test ρ1[t1, g2] ⊆ g1 fails, because g1 is false, and ρ1[t1, g2] is
(m′ = m) ∨ (m = 0 ∧m′ = 1) ∨ (m = 1 ∧m′ = 0). We update g1 to ρ1[t1, g2]
and g2 to ρ2[g1, t2] for iteration 3. In iteration 3, again there is no error, as
R(ti||g3−i) implies pci = 2 ⇒ m = i, for i = 1, 2. Moreover ρ1[t1, g2] = g1

and ρ2[g1, t2] = g2. Thus the gi’s are suitable environment assumptions, and the
program is safe (in a thread-modular way). 2

3 Race Detection

Data races. We now define the race-detection problem on a 2-threaded program
Π = (Q,Q0, T1, T2, E). For the remainder of the paper, i ranges over {1, 2}.
The program has a set Shared of variables visible to both threads, and sets
Privatei of variables visible only to thread i. Hence the shared (resp. private)
state space S (resp. Pi) is the set of all valuations to the variables in Shared
(resp. Privatei). The program counter of thread i is included in Privatei. For
each variable x ∈ Shared , let Writei(x) ⊆ Qi (resp. Read i(x) ⊆ Qi) denote
the set of states from which thread i writes (resp. reads) x. These states can
be computed by a simple syntactic analysis of the program. For instance, in
the program of Example 1, Writei(x) is defined by the predicate pci = 2, and
Read i(x) is false. The race-detection problem for a variable x ∈ Shared asks
if a state in Ex = ∪i∈{1,2}((Writei(x) ∪ Read i(x)) ∩Write3−i(x)) is (T1||T2)-
reachable. Intuitively, there is a data race on the variable x if the program
can reach a state in which both threads have enabled actions that access (read
or write) x, and at least one of these accesses is a write. For the program of
Example 1, the set Ex is pc1 = 2 ∧ pc2 = 2.
Havoc abstractions. We have implemented a variant of Algorithm Tar to
check for data races: we further approximate each environment assumption gi
by predicates that use the domain (first coordinate) of the relation gi, but ignore
the effect of a transition (second coordinate). For each thread i, the algorithm
maintains a havoc map hi on Shared , such that hi(x) ⊆ Qi for every variable
x ∈ Shared . Every havoc assumption hi(x) gives an approximation of the set
of states from which thread i can write to x. The environment assumption gi
induced by the havoc map hi may change x to any arbitrary value (“havoc x”)
in a shared state s if there is some private state pi such that (s, pi) ∈ hi(x);
otherwise gi leaves x unchanged. The initial havoc map assigns to every shared
variable the empty set (represented by the predicate false). Hence, each thread
initially assumes that the other threads do not modify any shared variable.
Each iteration of Algorithm Tar updates the havoc map as follows. Whenever
the overapproximations t1 and t2 of the thread transition relations are refined

thread Producer

1’:while (1) {
2’: while (flag != 0) {};
3’: data = get new data();

4’: flag = 1;

}

thread Consumer

1: while (1) {
2: while (flag != 1) {};
3: copy = data;

4: flag = 0;

}

Fig. 1. A producer-consumer system.

(by Θ), then all havoc assumptions are reinitialized to false. Otherwise, h1(x)
(resp. h2(x)) is updated to R(t1||g2) ∩Write1(x) (resp. R(g1||t2) ∩Write2(x)).

Example 1 with havoc. In Example 1, Writei(m) is (pci = 1∧m = 0)∨pci = 3.
After iteration 2, the havoc assumption h1(m) is (pc1 = 1 ∧ m = 0) ∨ (pc1 =
3∧m = 1), meaning that when analyzing thread 2, the environment may change
the value of m arbitrarily in states where m = 0 ∨m = 1. 2

Algorithm Tar with havoc. The input is a multithreaded program, a set
X ⊆ Shared of variables on which we check for data races, and a set of predicates
that include control information about each thread.

Initialization (“Seed assumption”) Set the havoc assumption for each thread
and each shared variable to false, i.e., the environment does nothing. The
initial transition relation for each thread is the (existential) predicate ab-
straction of the thread’s transition relation w.r.t. the given predicates.

Step 1 (“Reachability analysis”) Compute an abstraction Ri of the reachable
states of each thread i, based on the current havoc assumptions about the
behavior of the other threads, and the present set of predicates.

Step 2 (“Counterexample analysis”) Check if the reach sets Ri computed in
step 1 contain states with data races, i.e., check if R1 ∩R2 ∩Ex is nonempty
for some variable x ∈ X. If the intersection is empty for all x ∈ X, then go
to step 3. Otherwise, check if the abstract counterexample corresponds to a
concrete program trace. If it does, then report the bug (“unsafe”); otherwise
(a) discover new predicates that rule out the spurious counterexample and
add them to the set of predicates, thus refining the transition relation of
each thread, and (b) reset the havoc assumptions for each thread to false,
and then go to step 1.

Step 3 (“Discharge assumptions”) Check if the havoc assumptions are sound,
i.e., for each thread i and variable x ∈ Shared check if hi(x) ⊆ Ri∩Writei(x).
If so, report “safe”; otherwise update the havoc assumptions w.r.t. the
present reach sets as discussed above, and then go to step 1.

Example 2. The 2-threaded program of Figure 1 has a Producer thread that
produces new data items by writing to the variable data, and a Consumer thread
that consumes the data items by reading from data. We illustrate how our
algorithm verifies the absence of races on the shared variable data. The example
is correct, because Producer writes to data only when it knows that flag is 0,

which happens after Consumer has removed the item that was put there last; and
Consumer reads only when Producer is done with putting new data in, which it
knows has happened when flag is set to 1. As the race-freedom depends on the
value of the variable flag, and not on explicitly declared locks (as in Example 1,
where m was a lock), existing static and dynamic race checkers report false
positives for this program.

Initialization The havoc assumptions for both threads are set to false. In other
words, when analyzing Consumer we assume that Producer does not affect the
shared state in any way, and vice versa. The initial set of predicates is empty,
but we track control flow (i.e., program counter values) explicitly.

Iteration 1

Step 11 Since we do not track any predicates, reachability analysis finds that
for both threads the entire state space is reachable.

Step 21 To check if the current reach sets are error-free, we check if they contain
a state with Consumer in location 3 and Producer in location 3’ (where data
is accessed). For this, we check the intersection of the regions reachable in loca-
tions 3 and 3’ for emptiness. Since the respective reachable regions are true, we
find the intersection nonempty. From the reachability analysis, we have a trace
for Consumer that leads to 3 with region true, and a corresponding trace for
Producer. We submit both finite traces to counterexample analysis (this rou-
tine is discussed in the next section), which reports that the predicates flag = 1
and flag = 0 are important. We reset the havoc assumptions for both threads to
false and add these two predicates to be tracked.

Iteration 2

Step 12 Once the reach set for Consumer is recomputed using the enlarged set
of predicates, we find that the region reachable in locations 3 and 4 is flag = 1.
Hence, Consumer reads data or modifies flag only when flag = 1. This stems
from the assumption that Producer never modifies flag, which follows from
the current havoc assumption false. Similarly, in the recomputed reach set for
Producer, the variables data or flag are modified only when flag = 0.

Step 22 We check if the present reach sets contain races. As the intersection
of the states when Consumer and Producer access data is flag = 1 ∧ flag = 0,
which is empty, we conclude that there are no races on data.

Step 32 We check the soundness of the havoc assumptions by checking if for each
thread, the havoc assumptions for data and flag contain the set of states where
the thread modifies the variable. This is not the case, as the havoc assumptions
are false, but the region where Consumer (resp. Producer) modifies the variables
is flag = 1 (resp. flag = 0). Hence we update the havoc assumptions to the new
reach sets. In particular, the new havoc assumption of flag for Consumer (resp.
Producer) is flag = 1 (resp. flag = 0), that is, when analyzing the Consumer
(resp. Producer) we now assume that the environment havocs flag only when
flag = 0 (resp. flag = 1).

Iteration 3

Step 13 We recompute the reach set of each thread with the new havoc assump-
tions. When Consumer breaks out of the loop at location 1, the state is flag = 1.
Subsequently, the environment cannot havoc flag, because the current havoc
assumption is flag = 0. Thus, the state at which Consumer accesses data has
still flag = 1.

Step 23 As the reach sets are the same as in iteration 2, there is no race.

Step 33 This time we find that the havoc assumptions are sound, because they
contain the reach sets. Thus we conclude that the current reach sets are over-
approximations of the reachable states of the program, and hence there are no
races on data. 2

4 Implementation in Blast

We have implemented Algorithm Tar in the model checker Blast [14]. The
checker abstracts transition relations and havoc maps using predicate abstrac-
tion [12]. The program counter and stack of each thread are kept concrete, but
the shared and private state of a thread are abstracted to a boolean combination
of a finite set of predicates over program variables.

Counterexample analysis. An atomic region for a thread consists of the pro-
gram counter, the stack, and a boolean combination of predicates. For each
atomic region a in the reach set R(ti||g3−i), the checker maintains a path path(a)
from an initial region to a, comprising of ti and g3−i transitions. There is a pos-
sible data race on x if there is a pair of atomic regions a ∈ R(ti||g3−i) and
a′ ∈ R(gi||t3−i) such that a ⊆ Read i(x) ∪Writei(x) and a′ ⊆ Write3−i(x) and
a∩a′ 6= ∅. If the intersection of the regions a and a′ is nonempty, then the checker
analyzes path(a) and path(a′). Our heuristic refinement procedure ignores thread
interleavings and symbolically executes path(a) (resp. path(a′)) replacing the ab-
stract ti (resp. t3−i) transitions with concrete Ti (resp. T3−i) transitions. It then
uses a theorem prover to check if the conjunction of the resulting symbolic stores
is satisfiable. If the conjunction is satisfiable, then it reports a possible race. Note
that because the tool ignores thread interleavings, it may return false positives
(so far, we have not encountered false positives in practice). If the conjunction is
unsatisfiable, then the proof of unsatisfiability is mined for new predicates that
are used to refine the abstract transition relations [14].

Thread symmetry. If both threads execute the same code, but differ only in
the thread identifier, we can optimize the algorithm by computing the reachable
set of states for one thread, and obtaining the reachable set of states for the
other thread by syntactic renaming. For example, in a variant of Example 1,
if both threads run the code of thread 1, we can compute the set of reachable
states of thread 2 from those of thread 1 by simultaneously substituting m = 2
for m = 1, m = 1 for m = 2, and pc1 by pc2. This enables our implementation
to deal with an unbounded number of threads running the same code.

Benchmark LOC Iterations Theorem prover Time
outer inner queries (sec)

Simple 27 3 97 693 1.208
Simple (buggy) 36 2 131 466 0.220
Producer-Consumer 73 4 505 4349 5.048
Producer-Consumer (buggy) 73 1 149 331 0.403
Time-varying 58 4 612 11219 9.653
Time-varying (buggy) 58 1 61 190 0.259

aironet 1513 3 30955 227735 713.71
packet 4085 3 654 4336 11.610

Table 2. Race-checking benchmarks. LOC is lines of code. The number of outer it-
erations is the number of times the environment assumptions are reset to false. The
number of inner iterations is the number of times the environment assumptions are
updated after the last time they are reset to false. Theorem prover queries is the to-
tal number of theorem prover queries. Time is the total running time for the tool in
seconds on a 700MHz Linux PC with 1GB RAM.

5 Experience

Locking schemes. We applied Blast to a number of small examples that im-
plement different synchronization idioms commonly used in systems code. These
include the locking example from Section 2, the producer-consumer synchroniza-
tion from Section 3, and a time-varying synchronization example from [9]. In the
time-varying example, the threads use different locks to access the same shared
data at different points in the execution, based on the current state of the pro-
gram. For each benchmark, we created a second, buggy version by deliberately
introducing a bug. In each case, our tool was able to detect the absence or pres-
ence of races correctly in a few seconds. Table 2 shows the results of running
Blast on the three benchmarks.

Device drivers. We also ran the tool on much larger Linux and Windows NT
device drivers. As these drivers can be called by any number of clients concur-
rently, we are checking for the absence of races on shared variables (typically
the state variables maintained by the driver) in an unbounded number of par-
allel threads. We checked the dispatch routines readrid and writerid of the
aironet4500 Linux device driver. For this, we modeled the functions spin lock
and spin unlock of the Linux kernel manually, as in Example 1, and kernel calls
to the driver by an infinite loop that calls the methods readrid and writerid
nondeterministically. Our tool reported that these routines are safe (no data
races). We also ran our tool on a network packet driver from the Microsoft Win-
dows DDK. We found two race conditions in this program, which has more than
4,000 lines of C code. The race conditions were benign, because the operations
modifying the shared state were atomic. However, further inspection of the traces
revealed a real concurrency bug.

References

1. M. Abadi, L. Lamport. Conjoining specifications. ACM TOPLAS 17:507–534, 1995.
2. R. Alur, T.A. Henzinger. Reactive modules. Formal Methods in System Design,

15:7–48, 1999.
3. R. Alur, A. Itai, R.P. Kurshan, M. Yannakakis. Timing verification by successive

approximation. Information and Computation, 118:142–157, 1995.
4. T. Ball, S.K. Rajamani. The Slam project: debugging system software via static

analysis. In Proc. POPL, pp. 1–3. ACM, 2002.
5. C. Boyapati, M. Rinard. A parameterized type system for race-free Java programs.

In Proc. OOPSLA, pp. 56–69, 2001.
6. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In Proc. CAV, LNCS 1855, pp. 154–169. Springer, 2000.
7. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, R.S. Laubach, H. Zheng. Bandera:

extracting finite-state models from Java source code. In Proc. ICSE, pp. 439–448.
IEEE, 2000.

8. C. Flanagan, S.N. Freund. Detecting race conditions in large programs. In Proc.
PASTE, pp. 90–96. ACM, 2001.

9. C. Flanagan, S.N. Freund, S. Qadeer. Thread-modular verification for shared-
memory programs. In Proc. ESOP, LNCS 2305, pp. 262–277. Springer, 2002.

10. C. Flanagan, S. Qadeer. Thread-modular model checking. In Proc. SPIN, LNCS
2648, pp. 213–224. Springer, 2003.

11. C. Flanagan, S. Qadeer, S.A. Seshia. A modular checker for multithreaded pro-
grams. In Proc. CAV, LNCS 2404, pp. 180–194. Springer, 2002.

12. S. Graf, H. Säıdi. Construction of abstract state graphs with Pvs. In Proc. CAV,
LNCS 1254, pp. 72–83. Springer, 1997.

13. K. Havelund, T. Pressburger. Model checking Java programs using Java
Pathfinder. Software Tools for Technology Transfer, 2:72–84, 2000.

14. T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre. Lazy abstraction. In Proc.
POPL, pp. 58–70. ACM, 2002.

15. G.J. Holzmann. The Spin model checker. IEEE TSE, 23:279–295, 1997.
16. G.J. Holzmann. Logic verification of ANSI-C code with Spin. In Proc. SPIN,

LNCS 1885, pp. 131–147. Springer, 2000.
17. C.B. Jones. Tentative steps toward a development method for interfering programs.

ACM TOPLAS 5:596–619, 1983.
18. S. Owicki, D. Gries. An axiomatic proof technique for parallel programs. Acta

Informatica, 6:319–340, 1976.
19. S. Savage, M. Burrows, C.G. Nelson, P. Sobalvarro, T. Anderson. Eraser: a

dynamic data race detector for multithreaded programs. ACM TOCS, 15:391–411,
1997.

20. N. Sterling. Warlock: a static data race analysis tool. In Proc. USENIX Technical
Conference, pp. 97–106, 1993.

21. E. Yahav. Verifying safety properties of concurrent Java programs using three-
valued logic. In Proc. POPL, pp. 27–40. ACM, 2001.

