Equality-Based Translation Validator for LLVM

Michael Stepp, Ross Tate, and Sorin Lerner

University of California, San Diego
{mstepp,rtate, lerner}@cs.ucsd.edu

Abstract. We updated our Peggy tool, previously presented in [6], to
perform translation validation for the LLVM compiler using a technique
called Equality Saturation. We present the tool, and illustrate its effec-
tiveness at doing translation validation on SPEC 2006 benchmarks.

1 Introduction

Compiler optimizations have long played a crucial role in the software ecosystem,
allowing programmers to express their programs at higher levels of abstraction
without paying the performance cost. At the same time, however, programmers
also expect compiler optimizations to be correct, in that they preserve the be-
havior of the programs they transform. Unfortunately, this seemingly simple
requirement is hard to ensure in practice. One approach to improving the relia-
bility of compiler optimizations is a technique called Translation Validation [4].
After each run of the optimizer, a separate tool called a translation validator tries
to show that the optimized program is equivalent to the corresponding original
program. Therefore, a translation validator is just a tool that tries to show two
programs equivalent. In our own previous work [6], we developed a technique
for reasoning about program equivalence called Fquality Saturation, and a tool
called Peggy that implements this technique. Although our paper focused mostly
on performing compiler optimizations using Peggy, we also showed how Equality
Saturation can be used to perform translation validation, and that Peggy is an
effective translation validator for Soot, a Java bytecode-to-bytecode optimizer.

Inspired by the recent results of Tristan, Govereau and Morrisett [7] on trans-
lation validation for LLVM [1], we have updated our Peggy tool so that it can be
used to perform translation validation for LLVM, a more aggressive and more
widely used compiler than Soot. This updated version of Peggy reuses our pre-
viously developed equality saturation engine described in [6]. However, we had
to develop several new, LLVM-specific components for Peggy: an LLVM front-
end for the intermediate representation used by our equality-saturation engine;
new axioms for our engine to reason about LLVM loads, stores and calls; and
an updated constant folder that takes into account LLVM operators. Finally,
we present new experimental results showing the effectiveness of Peggy at doing
translation validation for LLVM on SPEC 2006 C benchmarks.

2 Michael Stepp, Ross Tate, and Sorin Lerner

int £(p,t) {

*p =t
*p = *p | (t & 4)
return 0

int g(p,t) {
*p :=t | (t & 4)
return 0

}

Fig. 1. (a) Original code (b) Optimized code (c) Combined E-PEG.

2 Overview

We first present several examples demonstrating how Peggy performs translation
validation. These examples are distilled versions of real examples that we found
while doing translation validation for LLVM on SPEC 2006.

Example 1. Consider the original code in Figure 1(a) and the optimized code in
Figure 1(b). There are two optimizations that LLVM applied here. First, LLVM
performed copy propagation through the location *p, thus replacing *p with t.
Second, LLVM removed the now-useless store *p := t.

Our approach to translation validation uses a representation that we devel-
oped and presented previously called Program Expression Graphs [6] (PEGs). A
PEG is a pure functional representation of the program which has nice proper-
ties for reasoning about equality. Figure 1(c) shows the PEGs for £ and g. The
labels £, and f, point to the value and heap returned by f respectively, and
likewise for g — for now, let us ignore the dashed lines. In general, a PEG is a
(possibly cyclic) expression graph. The children of a node are shown graphically
below the node. Constants such as 4 and 0 have no children, and nodes with a
square around them represent parameters to the function and also have no chil-
dren. PEGs encode the heap in a functional way using the standard operators
load and store. In particular, given a heap o and a pointer p, load(c,p) returns
the value at address p; given a heap o, a pointer p, and a value v, store(o,p,v)
returns a new heap identical to o, except that the value at address p is v. The
PEG for f takes a heap o as an input parameter (in addition to p and t), and
produces a new heap, labeled £, and a return value, labeled f,,.

Our approach to translation validation builds the PEGs for both the original
and the optimized programs in the same PEG space, meaning that nodes are
reused when possible. In particular note how t & 4 is shared. Once this combined
PEG has been constructed, we apply equality saturation, a process by which
equality axioms are repeatedly applied to infer equalities between PEG nodes. If
through this process Peggy infers that node £, is equal to node g, and that node

Equality-Based Translation Validator for LLVM 3

char* f(p,s,r) {
x := strchr (s, *p)
*r = *p+l
return x

char* g(p,s,r) {

t = *p

x := strchr(s,t) params : \
*r = t+l / \ !]
return x [s] load

}

Fig. 2. (a) Original code (b) Optimized code (¢) Combined E-PEG.

f, is equal to node g,, then Peggy has shown that the original and optimized
functions are equivalent. In the diagrams we use dashed lines to represent PEG
node equality (in the implementation, we store equivalence classes of nodes using
Tarjan’s union-find data structure). Note that E-PEGs are similar to E-graphs
from SMT solvers like Simplify [3] and Z3 [2], but specialized for representing
programs and with algorithms specialized to handle cyclic expressions which
arise much more frequently in E-PEGs than in typical SMT problems.
Peggy proves the equivalence of £ and g in the following three steps:

Peggy adds equality @ using axiom: load(store(o,p,v),p) = v
Peggy adds equality(@ by congruence closure: a = b = f(a) = f(b)
Peggy adds equality@) by axiom: store(store(o,p,v1),p,ve) = store(o, p, va)

By equality), Peggy has shown that £ and g return the same heap, and are
therefore equivalent since they are already known to return the same value 0.

Example 2. As asecond example, consider the original function f in Figure 2(a)
and the optimized version g in Figure 2(b). p is a pointer to an int, s is a
pointer to a char, and r is a pointer to an int. The function strchr is part
of the standard C library, and works as follows: given a string s (i.e., a pointer
to a char), and an integer ¢ representing a character!, strchr(s,c) returns a
pointer to the first occurrence of the character c in the string, or null otherwise.
The optimization is correct because LLVM knows that strchr does not modify
the heap, and the second load *p is redundant.

The combined PEGs are shown in Figure 2(c). The call to strchr is rep-
resented using a call node, which has three children: the name of the function,
the incoming heap, and the parameters (which are passed as a tuple created by
the params node). A call node returns a pair consisting of the return value and

! It may seem odd that c is not declared a char, but this is indeed the interface.

4 Michael Stepp, Ross Tate, and Sorin Lerner

int f(x,y,z) {
for (t:=0; t<z; t:=x*y+t) {}

N
eval
return t ' \
} i
a),
,, (,,),{ (C)) pass
int g(x,y,2) { ® 0\
Ry = x*y 1 /+

|
>
| £
for (t:=0; t<z; t:=xy+t) {}] /*\ \ i 7o
return t ': IE IE IZ‘ Iﬁ

Fig. 3. (a) Original code (b) Optimized code (¢) Combined E-PEG.

the resulting heap. We use projection operators p, and p, to extract the return
value and the heap from the pair returned by a call node.

To give Peggy the knowledge that standard library functions like strchr do
not modify the heap, we have annotated such standard library functions with an
only-reads annotation. When Peggy sees a call to a function foo annotated with
only-reads, it adds the equality only-reads(foo) = true in the PEG. Equality @
in Figure 2(c) is added in this way.

Peggy adds equality Q) using: only-reads(n) = true = p,(call(n,o,p)) = o.
This axiom encodes the fact that a read-only function call does not modify the
heap. Equalities(@),@), and(®) are added by congruence closure.

In these 5 steps, Peggy has identified that the heaps f, and g, are equal,
and since the returned values f, and g, are trivially equal, Peggy has shown
that the original and optimized functions are equivalent.

Example 3. As a third example, consider the original code in Figure 3(a) and
the optimized code in Figure 3(b). LLVM has pulled the loop-invariant code
xxy outside of the loop. The combined PEG for the original function f and
optimized function g is shown in Figure 3. As it turns out, £ and g will produce
the exact same PEG, so let us focus on understanding the PEG itself. The 6
node represents the sequence of values that t takes throughout the loop. The
left child of the @ node is the first element of the sequence (0 in this case) and
the right child provides any element in the sequence after the first one in terms
of the previous element. The eval/pass pair is used to extract the value of t
after the loop. The > node is a lifting of > to sequences, and so it represents the
sequence of values that t > z takes throughout the loop. pass takes a sequence of
booleans and returns the index of the first boolean in the sequence that is true.
Therefore pass in this case returns the index of the last iteration of the loop.
eval takes a sequence of values and an integer index, and returns the element of
the sequence at that index. Therefore, eval returns the value of t after the last
iteration of the loop (a denotational semantics of PEGs can be found in [6]).
As Figure 3 shows, the PEG for the optimized function g is the same as the
original function f. Peggy has validated this example just by converting to PEGs,
without even running equality saturation. One of the key advantages of PEGs is

Equality-Based Translation Validator for LLVM 5

that they are agnostic to code-placement details, and so Peggy can validate code
placement optimizations such as loop-invariant code motion, lazy code motion,
and scheduling by just converting to PEGs and checking for syntactic equality.

3 Implementation

Axioms. Peggy uses a variety of axioms to infer equality information. Some
of these axioms were previously developed and state properties of built-in PEG
operators like 0, eval, pass, and ¢ (which are used for conditionals). We also im-
plemented LLVM specific axioms to reason about load and store, some of which
we have already seen. An additonal such axiom is important for moving unaliased
loads/stores across each other: p # ¢ = load(store(o, q,v),p) = load (o, p).

Alias Analysis. The axiom above can only fire if p # ¢, requiring alias in-
formation. Our first attempt was to encode an alias analysis using axioms, and
run it using the saturation engine. However, this added a significant run-time
overhead, and so we instead took the approach from [7], which is to pre-compute
alias information; we then used this information when applying axioms.

Generating Proofs. As described in our follow-up work [5], after Peggy val-
idates a transformation it can use the resulting E-PEG to generate a proof of
equivalence of the two programs. This proof has already helped us determine
how often axioms are useful. In the future, we could also use this proof to im-
prove the run-time of our validator: after a function f has been validated, we
could record which axioms were useful for f, and enable only those axioms for
subsequent validations of f (reverting back to all axioms if the validation fails).

4 Results

We used Peggy to perform translation validation for LLVM 2.8 on SPEC 2006
C benchmarks. We enabled the following optimizations: dead code elimination,
global value numbering, partial redundancy elimination, sparse conditional con-
stant propagation, loop-invariant code motion, loop deletion, loop unswitching,
dead store elimination, constant propagation, and basic block placement.
Figure 4 shows the results: “#func” and “#instr” are the number of functions
and instructions; “%success” is the percentage of functions whose compilation
Peggy validated (“All” considers all functions; “OC”, which stands for “Only
Changed”, ignores functions for which LLVM’s output is identical to the input);
“To PEG” is the average time per function to convert from CFG to PEG; “Avg
Engine Time” is the average time per function to run the equality saturation
engine (“Success” is over successful runs, and “Failure” over failed runs).
Overall our results are comparable to [7]. However, because of implemen-
tation differences (including the set of axioms), an in-depth and meaningful
experimental comparison is difficult. Nonetheless, conceptually the main differ-
ence is that [7] uses axioms for destructive rewrites, whereas we use axioms

6 Michael Stepp, Ross Tate, and Sorin Lerner

. %success To | Avg Engine Time
Benchmark #func | #finstr All OC | PEG | Success | Failure
400.perlbench 1,864 269,631| 79.0%| 73.3%| 0.531s 1.028s 11s
401.bzip2 100| 16,312| 82.0%| 76.9%| 0.253s 0.733s 19s
403.gcc 5,577 828,962| 80.8%| 74.9%| 0.558s 0.700s 19s
429 .mcf 24 2,541| 87.5%| 87.0%| 0.216s 0.500s 19s
433.milc 235 21,764| 80.4%| 75.0%| 0.246s 0.188s 9s
456 . hmmer 538| 57,102| 86.4%| 84.6%| 0.285s 0.900s 11s
458.sjeng 144 23,807| 77.1%| 72.5%| 1.099s 0.253s 7s
462.libquantum 115 5,864| 73.9%| 64.3%| 0.123s 0.167s 8s
464 .h264ref 590| 131,627| 74.2%| 70.5%| 0.587s 0.846s 12s
470.1bm 19 3,616| 78.9%| 76.5%| 0.335s 0.154s 3s
482.sphinx3 369 28,164| 88.1%| 86.0%| 0.208s 0.480s 12s

Fig. 4. Results of running Peggy’s translation validator on SPEC 2006 benchmarks.

to add equality information to the E-PEG, thus expressing multiple equivalent
programs at once. Our approach has several benefits over [7]: (1) we simultane-
ously explore an exponential number of paths through the space of equivalent
programs, whereas [7] explores a single linear path — hence we explore more of
the search space; (2) we need not worry about axiom ordering, whereas [7] must
pick a good ordering of rewrites for LLVM — hence it is easier to adapt our
approach to new compilers, and a user can easily add/remove axioms (without
worrying about ordering) to balance precision/speed or to specialize for a given
code base; (3) our approach effectively reasons about loop-induction variables,
which is more difficult using the techniques in [7]. However, the approach in [7]
is faster, because it explores a single linear path through the space of programs.

Failures were caused by: (1) incomplete axioms for linear arithmetic; (2)
insufficient alias information; (3) LLVM’s use of pre-computed interprocedural
information, even in intraprocedural optimizations. These limitations point to
several directions for future work, including incorporating SMT solvers and bet-
ter alias analyses, and investigating interprocedural translation validation.

References

1. The LLVM compiler infrastructure. http://11lvm.org.

2. L. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, 2008.

3. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program
checking. J. ACM, 52(3):365-473, 2005.

4. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS, 1998.

5. R. Tate, M. Stepp, and S. Lerner. Generating compiler optimizations from proofs.
In POPL, 2010.

6. R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality saturation: a new approach
to optimization. In POPL, 2009.

7. J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation
validation for LLVM. In PLDI, 2011.

