
143

Don’t Look UB: Exposing Sanitizer-Eliding Compiler
Optimizations
RAPHAEL ISEMANN, Vrije Universiteit Amsterdam, The Netherlands
CRISTIANO GIUFFRIDA, Vrije Universiteit Amsterdam, The Netherlands
HERBERT BOS, Vrije Universiteit Amsterdam, The Netherlands
ERIK VAN DER KOUWE, Vrije Universiteit Amsterdam, The Netherlands
KLAUS VON GLEISSENTHALL, Vrije Universiteit Amsterdam, The Netherlands

Sanitizers are widely used compiler features that detect undefined behavior and resulting vulnerabilities by
injecting runtime checks into programs. For better performance, sanitizers are often used in conjunction with
optimization passes. But doing so combines two compiler features with conflicting objectives. While sanitizers
want to expose undefined behavior, optimizers often exploit these same properties for performance. In this
paper, we show that this clash can have serious consequences: optimizations can remove sanitizer failures,
thereby hiding the presence of bugs or even introducing new ones.

We present LookUB, a differential-testing based framework for finding optimizer transformations that elide
sanitizer failures. We used our method to find 17 such sanitizer-eliding optimizations in Clang. Next, we used
static analysis and fuzzing to search for bugs in open-source projects that were previously hidden due to
sanitizer-eliding optimizations. This led us to discover 19 new bugs in Linux Containers, libmpeg2, NTFS-3G,
and WINE. Finally, we present an effective mitigation strategy based on a custom Clang optimizer with an
overhead increase of 4%.

CCS Concepts: • Security and privacy→ Software security engineering.

Additional Key Words and Phrases: Sanitizers, Fuzzing, Optimizations

ACM Reference Format:
Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall. 2023.
Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations. Proc. ACM Program. Lang. 7, PLDI,
Article 143 (June 2023), 21 pages. https://doi.org/10.1145/3591257

1 INTRODUCTION
Languages like C, C++, and Rust specify that programs must not contain logic classified as ‘unde-
fined behavior’. If a program contains such behavior, the specification no longer mandates how
an implementation has to interpret the program, and the program is rendered de facto mean-
ingless [Wang et al. 2012, 2013; Yang et al. 2011]. Yet, by default, the compiler is not required
to diagnose this condition. This combination of unpredictable results and lack of detection has
made undefined behavior the premier source of software vulnerabilities such as buffer overflows,
null-pointer dereferences, or use-after-free.

Authors’ addresses: Raphael Isemann, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands, r.isemann@vu.
nl; Cristiano Giuffrida, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands, giuffrida@cs.vu.nl; Herbert
Bos, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands, herbertb@cs.vu.nl; Erik van der Kouwe,
Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands, vdkouwe@cs.vu.nl; Klaus von Gleissenthall, Vrije
Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands, k.freiherrvongleissenthal@vu.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART143
https://doi.org/10.1145/3591257

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

https://doi.org/10.1145/3591257
https://doi.org/10.1145/3591257

143:2 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

One promising solution for detecting undefined behavior has emerged in the form of sanitiz-
ers [Song et al. 2019], a compiler feature found in all major toolchains such as Clang, GCC, and
Rust. Sanitizers inject runtime checks during compilation; if a bug is detected during the execution,
the program is aborted and the bug is reported to the user. Because sanitizers have access to both
the original source program and the exact runtime values, they produce user-friendly error reports,
typically with no false positives. As such, sanitizers are widely used in combination with unit
testing or fuzzing to find security-sensitive bugs [Serebryany 2017].

In practice, the applicability of sanitizers is limited by the overhead of the injected checks [Wagner
et al. 2015; Zhang et al. 2021, 2022]. In automated testing, the overhead significantly slows down bug
discovery [Jeon et al. 2020], while in production, it may make sanitization impractical altogether. To
reduce the negative performance impact of sanitizers, modern compiler toolchains such as Clang,
GCC, and Rust thus rely on standard optimization passes.

But doing so combines two compiler features with conflicting objectives. While sanitizers want
to expose undefined behavior, optimizers often exploit these same properties for performance. This
clash can lead an otherwise-valid compiler optimization to cause an essential (i.e., failing) sanitizer
check to be omitted from the binary—either because the check itself or, more commonly, the code
exhibiting undefined behavior is optimized away—we call this a sanitizer-eliding optimization.
Sanitizer-eliding optimizations are particularly interesting from a security perspective, as the
removed sanitizer checks can hide security-sensitive bugs from sanitizer-based bug finding tools
such as fuzzers. Worse, since such optimizations tend to be particularly program- and compiler-
sensitive, seemingly harmless changes to the program, compiler, or optimization settings (e.g., -O2
instead of -O1) may unexpectedly re-introduce previously masked vulnerabilities in production
binaries.

In this paper, we analyze the problem of sanitizer-eliding optimizations and show that they affect
even the most popular sanitizers (ASan, MSan, and UBSan) in both GCC and Clang and may lead
to a variety of undiscovered vulnerabilities such as memory leaks, uninitialized reads, and memory
corruption. To do so, we have developed LookUB, a framework to find such optimizations in modern
compilers. LookUB relies on a mutational fuzzing pipeline to automatically generate programs
susceptible to undefined behavior and on a differential testing oracle to pinpoint sanitizer-eliding
optimizations.
We have applied LookUB to optimizers and sanitizers available in Clang and GCC. We show

LookUB can find 17 sanitizer-eliding optimizations in Clang and 5 in GCC. We then examine the
different classes of issues and evaluate their practical bug-hiding impact by means of static analysis
and fuzzing. Overall, we show our LookUB-guided bug finding methodology is able to uncover 20
new bugs in popular programs (Ubuntu software packages and oss-fuzz). Finally, after identifying
the problematic optimizations, we evaluate optimization configurations that do not exhibit the
elisions and still optimize the sanitized code, resulting in an overhead increase of 4%.

Contributions. Summarizing, we make the following contributions:

• We present LookUB, an open-source fuzzing method to automatically find sanitizer-eliding
optimizations in compilers.

• An experimental evaluation of our method on the optimizers and sanitizers of the Clang and
GCC toolchains.

• An analysis of how and where the bugs hidden by sanitizer-eliding optimizations can be
found in real world software.

• A Clang-based compiler that preserves sanitizer checks while incurring a low performance
overhead.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:3

2 A MOTIVATING EXAMPLE 1 static void make_buffer(char **out) {
2 char *buf = (char*)malloc(64);
3 for (unsigned i = 0; i<=64; ++i)
4 buf[i] = '\0';
5 memcpy(&buf, out, sizeof(char*));
6 }
7

8 int main(int argc, char **argv) {
9 if (argc <= 1) return 0;
10 char *err_buf;
11 make_buffer(&err_buf);
12 if (err_buf != 0) {
13 printf("Failed to allocate log!");
14 return 1;
15 }
16

17 if (strcmp(argv[1], "secret123")) {
18 strcpy(err_buf, "NO AUTH");
19 printf("Access denied!");
20 fprintf(stderr, "%s", err_buf);
21 free(err_buf);
22 return 1;
23 }
24

25 printf("Access granted!");
26 free(err_buf);

Listing 1. Motivational example.

Listing 1 shows a C program providing an
authentication service that compares a pro-
vided password against a stored secret pass-
word. The program also logs any failed lo-
gin attempts to the stderr output stream.
Aside from some general security issues,
the program contains the following mem-
ory bugs:
(1) In lines 3 and 4 the program tries to

clear buf but overflows the buffer by
one byte due to the length check being
<=64 instead of <64.

(2) In line 5 the arguments to memcpy are re-
versed which assigns the out parameter
to the pointer buf holding the allocated
memory. This leaves err_buf in main
uninitialized and leads to several uses
of uninitialized values in the rest of the
program (the first of which is on line
12).

(3) Line 12 has a reversed allocation fail-
ure check that generates an error when
the memory allocation was successful
(instead of failed). This causes our pro-
gram to never actually free the allocated
memory as all free calls are now only
reachable via a failed malloc call.

Detecting the Bugs. All three bugs should be detectable by using one of Clang’s supported
sanitizers. Bug 1 should be detectable by AddressSanitizer, which covers generic invalid memory
accesses such as buffer overflows. The first symptom of bug 2 is a conditional jump with an
uninitialized value, which Clang’s MemorySanitizer can detect. Bug 3 is a memory leak which can
be detected by Clang’s AddressSanitizer or LeakSanitizer (the latter being part of AddressSanitizer).
Even though the example is artificial, the three bugs in it are real. The buffer overflow in line 3 and
4 is adapted from an overflow in the SPEC2006’s h264ref benchmark. The uninitialized read due
to a function not initializing an output variable is taken from the Linux container runtime LXC.
The inverted allocation check is a bug we found in the Linux Scanner framework SANE.

Adding Optimizations. While we expect to find these errors by sanitizing and running the
program below, the actual sanitizer reports heavily depend on the used optimizations. We can
observe the following behavior when running the sanitized binary optimized on different Clang
optimization levels.
(1) Nooptimizations (-O0): Both AddressSanitizer andMemorySanitizer detect the buffer overflow
and uninitialized read respectively. The memory leak caused by bug 3 is reported if the previously
found bugs are manually fixed.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:4 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

Clang
frontend

UBSan

Initial
LLVM IR

Optimizer
passes

Optimized
LLVM IR

ASan
Pass

MSan
Pass

Optimizer
passes

Backend

if UBSan enabled

ASan enabled

MSan enabled

no sanitizer enabled

Fig. 1. Code generation and sanitization pipeline of Clang/LLVM.

(2) Normal optimizations (-O1): Both sanitizers fail to detect any of the three bugs. Furthermore,
the compiled program now unconditionally takes the execution path that prints the error message
"Failed to allocate log!". Even with bug 1 and 2 manually fixed, the memory leak of bug 3 is
not reported.
(3) Full optimizations (-O2): The sanitizers still do not report any of the three bugs. However,
the memory bugs cause the optimizer to remove the authentication logic and the final program
now allows logging in with any provided password.

This example demonstrates that in their current form, sanitizers and compiler optimizations do
not reliably work together. This situation also forces the users of sanitizers to make the difficult
choice between reliable detection of bugs and reasonable performance of the sanitized program.
Ideally, compilers should be able to produce sanitized binaries that are both fast and capable of
reliably detecting bugs. To this end, we develop tools that can automatically analyze the interplay
between sanitizers and optimizers, and verify their soundness.

3 BACKGROUND
Sanitizers detect bugs by injecting checks into a program during compilation. When the injected
checks detect a potential issue, they generate a detailed error report. Sanitizers typically transform
code during compilation, calling functions in a separate runtime library for more complex func-
tionality outside the fast path, such as error reporting logic. The runtime library also interposes
some functions in the C standard library to implement some sanitizer checks.

Different sanitizers target different kinds of bugs, or offer alternative implementations for specific
hardware or target applications. In this paper, we focus on the following three widely used sanitizers:
• AddressSanitizer (ASan) detects buffer overflows (heap and stack), use-after-free, use-after-
scope bugs and memory leaks. It also detects invalid arguments passed to some C standard library
functions such as memcpy [Serebryany et al. 2012].

• UndefinedBehaviorSanitizer (UBSan) consists of various checks for different kinds of generic
undefined behavior such as signed integer overflows, dereferencing null pointers.

• MemorySanitizer (MSan) detects uninitialized memory uses [Stepanov and Serebryany 2015].
All three sanitizers are available in the LLVM-based Clang compiler, which supports sanitizing

C and C++, as well as some derived languages. The GCC toolchain implements its own version of
ASan and UBSan with compatible features, but does not currently support MSan.

Sanitization Pipeline. Figure 1 illustrates the sanitization pipeline in the Clang compiler. The
frontend translates the C or C++ source code to LLVM’s intermediate representation (LLVM IR). If
UBSan is enabled, it intercepts the generation of the initial LLVM IR and injects its checking logic.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:5

Afterwards the generated IR is passed to LLVM’s optimizer passes. The specific passes that optimize
the program depend on the optimization level and compilation flags. While modern compilers offer
many optimization levels, we only discuss the effects of the most commonly used levels O0, O1,
and O2.
• O0: This optimization level disables all optimization passes. While this severely impacts runtime
performance, it also reduces compilation time and makes the final program easier to debug.

• O1: This enables most optimizations in Clang or GCC. This optimization level aims to be a middle
ground between runtime performance, debuggability, and compilation time.

• O2: Nearly all optimizations are enabled at this level, further improving performance but making
programs harder to debug.
Both optimization passes and sanitizers transform the LLVM IR, the optimizations being applied

before the ASan or MSan sanitization passes. The MSan pass further optimizes the IR after sanitiza-
tion by rerunning several standard optimization passes. Finally, the optimized IR is passed to the
backend, which transforms LLVM IR into CPU-executable machine code. The sanitizers influence
the remaining compilation process only in minor ways. E.g., they link the sanitizer runtime libraries
into the program.

4 LOOKUB: AUTOMATICALLY FINDING SANITIZER-ELIDING OPTIMIZATIONS
This section describes LookUB, our method for detecting sanitizer-eliding optimizations.

Failure Preservation. Our method is built on the idea that compilers should preserve sanitizer
failures in the presence of optimization passes. That is, the compiler must maintain the following
invariant: If the execution of an unoptimized closed program reports a sanitizer failure, then the
execution of the optimized version of the same program must also report a sanitizer failure. We say
that a compiler which upholds this invariant is failure preserving. If failure preservation is violated,
we can conclude that some part of the optimization process removed an essential sanitizer check. We
use failure preservation as the test oracle in our randomized testing approach. By creating random
programs and verifying whether they violate failure preservation, LookUB can automatically create
test cases that demonstrate sanitizer-eliding optimizations in a given compiler. These test cases
can then be used by developers to identify the triggered sanitizer-eliding optimization. LookUB
consists of four components (see Figure 2):

• Scheduler: maintains a list of programs and in each iteration picks a program 𝑃 that is then
sent to the program mutator.

• Mutator: randomly mutates a program 𝑃 and into 𝑃 ′. 𝑃 ′ is then passed on to the test oracle.
• Test oracle: verifies whether program 𝑃 ′ violates failure preservation. If a violation is
detected, the program is saved as an interesting test case demonstrating a sanitizer-eliding
optimization. If no violation is detected, the program is sent to the fitness function.

• Fitness function: takes a non-violating program 𝑃 ′ and estimates the likelihood that a
program will trigger a sanitizer-eliding optimization. Program 𝑃 ′ and the calculated score
are then sent back to the scheduler.

4.1 Scheduler
The scheduler maintains a priority list of programs (or seeds). In each iteration, it selects a program
based on the score assigned by the fitness function, and passes it to the mutator. Each mutated
program is assigned the same constant energy for simplicity, that is each program is mutated for a
predetermined number of times. Initially the priority list can either consist of empty programs (i.e.,
with an empty main function) or randomly generated programs.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:6 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

Scheduler Program
mutator Test oracle

Fitness function

Test cases
program P mutated program P’ if invariant violated

violating program P’

if invariant not violated

mutated program P’(mutated program P’, fitness score)

Fig. 2. Overview of LookUB.

4.2 Mutator
The mutator applies random changes to the program 𝑃 provided by the scheduler. For example, it
might add a new function to 𝑃 or delete a statement. The only restriction to the kind of changes the
mutator can perform is that the new program 𝑃 ′ must be deterministic; we discuss this restriction
in Section 4.3. This component can be implemented by existing mutators like MUSIC [Phan et al.
2018] or MILU [Jia and Harman 2008]. In our implementation, we decided to write our own code
mutator, as explained in Section 5.1.

4.3 Test Oracle
The test oracle detects whether a program produces a sanitizer error that is removed by the optimizer.
It first compiles the program with and without optimizations. It then executes both programs and
searches their error output for sanitizer reports. If the unoptimized program produces a sanitizer
report and the optimized version does not, our test oracle classifies the input program as a test
case triggering a sanitizer eliding optimization. Note that our oracle does not check whether the
exact same set of sanitizer reports are emitted with and without optimizations. This prevents false
positives in cases where the compiler reorders sanitizer checks, as sanitizers typically only report
the first violation and then abort the program.

Program Restrictions. To reliably identify invariant violations, the programs under test need
to be deterministic. Our mutator therefore avoids calling non-deterministic functions like time().
However, the program may contain non-determinism, as long as the non-determinism is due to
undefined behavior reported by a sanitizer. Should the program contain non-determinism despite
our precautions, our classification strategy might lead to false positives. We explain the different
causes of false positives and the techniques we use to avoid them in Section 8.

4.4 Fitness Function
The fitness function assigns a score to each mutated program. The score is used by the scheduler to
select the next program for mutation. The fitness function is optional and without it LookUB runs
effectively as a generational program generator. Its main purpose is to make it possible to guide the
program generation towards specific sanitizer issues (see Section 5.3). The fitness function could
also be used to guide the general compiler fuzzing process. However, previous work has shown
that commonly used fitness functions such as the code coverage of the tested toolchain did not
help speed up bug discovery [Di Luna et al. 2021].

5 IMPLEMENTATION
This section provides an overview of our implementation of LookUB. We needed 5000 lines of C++
code to implement the scheduler and code mutator. We implemented two test oracles and fitness
functions for GCC and Clang in an additional 300 lines of Python code.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:7

5.1 Mutator
We decided against using an existing code mutator, as existing mutators often only provide simple
mutations or do not support features such as mutating C++ or code with compiler extensions.
Instead, we created our own code mutator supporting a subset of C++. The mutator can create and
mutate code that uses various C library functions, C++ heap allocation operators, if and while
statements, language constructs for C++ exceptions (e.g., throw, catch and noexcept), and several
compiler extensions. It also supports all integer and pointers types as well as related assignment,
arithmetic, logical, and comparison operators. Additionally, it can create and use cv-qualified types,
array types and function pointer types.

Our mutator operates on an abstract representation of the program that records functions, types,
and expressions described as annotated abstract syntax trees. Our framework converts this internal
representation to source code before it passes a test case to the compiler under test.

Mutation Process. The mutation process consists of three phases. First, the mutator picks a
random subtree of the abstract syntax tree. Second, our mutator generates a new piece of code that
fits the type and syntax restrictions of the original subtree. Third, the original subtree is replaced
with the generated code.

The code generation in our mutator creates AST nodes matching a set of constraints. The
generator randomly follows the production rules of a subset of the C++ grammar. The constraints
limit the possible production rules the generator can follow. This ensures that the created code
follows the C++ syntax and typing rules. E.g., a node might be required to be an expression of the
type int and an lvalue. Given these constraints, the generator will not produce literals (as those are
never an lvalue) or address-of operations (as they always return a pointer type). Each production
rule also propagates constraints. For example, the production rule for the indirection/dereference
operator would require that its child node evaluates to the type long* if the indirection operator
itself is constrained to evaluate to long.

Type and Syntax Checking. Our mutator ensures that the majority of the created programs pass
the type and syntax checks of the targeted compiler. This is partially ensured by the constraints
inside the code generator. Additionally, manual checks within the generator itself prevent the
creation of ill-formed programs. For example, before a function is deleted, the mutator checks
that no call to this function exists. About 95% of the programs produced by our mutator can be
successfully compiled by a standard C++ compiler. The remaining 5% of programs are ill-formed
because of mutation checks that we have not yet implemented.

5.2 Scheduler
We implemented the scheduler as a priority list that stores candidate programs in the internal
representation format used by the code mutator. The initial list consists of a single empty program.
We limit the number of times each program can be passed to the code mutator. Once a program
has been mutated often enough, we discard it from the priority queue.

5.3 Test Oracles and Fitness Function
We implement the test oracle and fitness function as standalone Python scripts which are invoked
by the scheduler. Each test oracle executes a compiled test case only once with an empty input.

Clang Test Oracle. Our Clang test oracle uses the ASan, UBSan, and MSan sanitizers when
compiling mutated programs. Because Clang does not allow enabling all sanitizers at the same
time, every test input is separately compiled and executed with each of the tested sanitizers. The
test oracle uses the sum of all sanitizer failures in each optimization level to detect violations of

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:8 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

failure preservation. That means the test oracle only considers a test case interesting if no sanitizer
reports an issue in the optimized version. We did not test other sanitizers such as ThreadSanitizer
or DataFlowSanitizer, as our generated test inputs do not use threads or data labels.

GCC Test Oracle. The GCC test oracle uses the ASan and UBSan sanitizers, but MSan is not
available on GCC. To avoid false positives due to uninitialized values influencing compilation, the
test oracle first runs every test input with Valgrind [Nethercote and Seward 2007] and ensures that
the execution does not use uninitialized values.

Targeted Search Mode. The fitness function’s purpose is to allow targeting specific sanitizer
checks in the search process. This is implemented by searching the output of a program for a
specified sanitizer error message (e.g. "AddressSanitizer: heap-use-after-free on address").
The fitness function assigns a higher score to programs that contain the specified string.

This targeted search mode allows LookUB to test compilers even if they container trivially
discoverable sanitizer-eliding optimizations. For example, both GCC and Clang frequently remove
sanitizer checks for memory leaks. This would end up blocking LookUB from finding other more
interesting optimizations as the removed leak checks would mark many programs as interesting in
the early mutation process. By specifying other non-leak sanitizer error messages with out targeted
search mode, LookUB can circumvent these fuzz blockers and continue the testing process.

6 SANITIZER-ELIDING OPTIMIZATIONS IN CLANG AND GCC
This section evaluates LookUB by detecting sanitizer-eliding optimizations in Clang and GCC
compiler. We use Clang/LLVM version 14.0 and GCC version 12.1 on a Linux system with glibc
2.35.

6.1 Clang Test setup
We tested Clang by running LookUB to generate a list of test cases that demonstrate sanitizer-eliding
optimizations. We then deduplicated the test cases by resolving each exercised sanitizer-eliding
optimization in a local Clang fork. Next, we repeated the testing process with our applied changes
to find further issues. In total, we spent about 100,000 CPU hours testing Clang with LookUB. Our
test machine was capable of running about 3 test inputs per CPU second.

6.2 Sanitizer-Eliding Optimizations in Clang
LookUB found 17 sanitizer-eliding optimizations affecting all tested sanitizers (ASan, MSan, and
UBSan) in Clang 14. 14 of these bugs affected ASan, 2 bugs affected MSan and 1 bug affected all
three sanitizers. In this section, we discuss the optimizations we found in more detail.

Dynamic Memory Transformations. LLVM contains several transformations that reason about
dynamic memory (i.e., memory created by malloc or new). These transformations lack several
checks that cause ASan checks to be elided. Consider for example Listing 4, which performs three
dynamic memory allocations. The first allocation is leaked, the second one is deallocated twice (a
double free bug), and the third allocation is correctly deallocated but then used twice afterwards (two
generic use-after-free bugs). ASan can detect all bugs by interposing the (de-)allocation functions
during program execution and instrumenting the load and store operations.

These respective checks are elided as follows. First, LLVM replaces the printf("%d", *leak);
statement with printf("%d", some_variable);. This removes the only use of the allocation
leak in our program. Because the new expression allocating leak itself has no observable behavior,
LLVM removes it without checking whether there is a proper call to delete. The final sanitized

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:9

1 struct Foo {
2 int i;
3 };
4 int main(int argc, char **argv) {
5 struct Foo f;
6 int size = 5;
7

8 // BUG: Foo is 4 (not 5) bytes,
9 // so memset will overflow 'f'.
10 memset(&f, 0, size);
11 printf("%d", f.i);
12

13 int *undefined;
14 // Note: argc is always >= 0.
15 if (argc >= 0) {
16 // BUG: Random memory write.
17 *undefined = 4;
18 } else {
19 printf("Unreachable code");
20 }
21 }

Listing 2. Buffer overflow and uninitialized
pointer use which are removed by the optimizer.

1 char buffer[3] = {'a', 'b', 'c'};
2 // BUG: overlapping memory areas.
3 memcpy(buffer, buffer + 1, 2);
4 // BUG: overlapping memory areas.
5 strcpy(buffer, buffer);
6 // BUG: buf is not null terminated.
7 return strlen(buffer) != 0;

Listing 3. Overlapping memcpy/strcpy and buffer
overflow which are removed by the optimizer.

1 // BUG: This memory is leaked.
2 int *leak = new int(some_variable);
3 printf("%d", *leak);
4

5 char *double_free = (char*)malloc(8);
6 free(double_free);
7 // BUG: Double free bug.
8 free(double_free);
9

10 long *use_after_free = new long;
11 delete use_after_free;
12 // BUG: Write/Read after free.
13 *use_after_free = 4
14 return *use_after_free;

Listing 4. Memory leak and double free removed
which are removed by the optimizer.

program lacks the single new call that ASan could interpose during runtime. Without this, ASan is
unable to detect that there is no matching call to delete when the code is executed.

A similar process occurs for the double_free allocation. Because the allocatedmemory is unused,
the optimizers considers removing the calls to malloc and free. While there is a safety check in the
optimizer when removing dynamic allocations, the check only contains logic detecting mismatched
memory management routines (CWE-762). No logic in the optimizer detects double-free bugs. The
malloc and free calls are removed in the final program and ASan is unable to interpose them to
perform its double-free check.
The two use-after-free bugs are removed in two sequential steps. First, the common subex-

pression elimination pass in the optimizer replaces return *use_after_free; with return 4;.
The respective pass ignores the fact that use_after_free is not a valid allocation anymore. The
assigment *use_after_free = 4 is now considered a dead store and the optimizer removes it.
With the use-after-free load and store operations removed, the ASan instrumentation running after
the optimizer can no longer instrument it to detect the two bugs.

C Standard Library Transformations. LLVM knows the semantics of several C standard library
functions and transforms calls to those functions in variousways. ASan, however, runtime interposes
many of these functions to insert checks for their specific undefined behavior. Consider the example
in Listing 3 that allocates a buffer and then calls several C library functions on it. The memcpy

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:10 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

call’s behavior is undefined as its target and source memory areas overlap. Because the size of the
memcpy operation is a small power of two, LLVM replaces this call with a pair of 2-byte load and
store operations. These operations lack ASan’s check for overlapping memory areas and hide the
bug from the user. The strcpy call below is also undefined because of overlapping memory areas.
Because source and target addresses of strcpy are equal, LLVM assumes the call has no effect and
removes it. Finally, the strlen call contains a buffer overflow as the array lacks a null terminator.
However, because the code only compares the length of the string to zero, LLVM replaces the call
with a single check that only verifies whether the first character is a null terminator. This removes
the memory accesses caused by strlen searching for the missing null terminator.

Removing Undefined Memory Accesses. We identified several places in LLVM that remove
memory accesses to invalid regions. Consider for example the code in Listing 2. The memset call
tries to zero out the 4-byte memory region of struct f. However, the memset call is given a byte
size of 5, leading to a stack buffer overflow. LLVM can detect that the actual memory region is just
4 bytes large and will shorten the size parameter to 4 bytes. While this fixes the buffer overflow,
the memset call no longer touches the redzone around the memory area. This causes that ASan can
no longer detect it with its runtime interposed memset function.

The second bug in the example is the use of an uninitialized pointer to store a value, which can be
detected byMSan. The use is inside the true branch of the if (argc>=0) statement, which is always
taken as argc is always larger or equal 0. However, the optimizer detects that the dereferenced
pointer is uninitialized, so it assumes that this branch is never taken. In our example, this causes
the optimizer to unconditionally cause the execution of the (in theory) unreachable else part of
the if (argc>=0) statement. The MSan check in line 17 is now never executed.

Removing Uninitialized Reads. LLVM removes reads from uninitialized memory. The values
that were supposed to be read from memory are replaced by a placeholder value expressing an
arbitrary bit value (usually expressed as undef). This in itself is not problematic, as theoretically the
uses of this placeholder value could still be detected by MSan. However, several optimization passes
replace this value by arbitrary picked concrete values, or remove the respective code entirely.
Consider for example the code shown in Listing 5. The index variable is uninitialized, and

used to select one of the values in argv. Because the variable index is 4 bytes and our 64-bit
system uses 8-byte pointers, the compiler zero extends the index before address computations. A
sanitizer-eliding optimization replaces the zero-extended undef value with a constant zero. This
erases both the uninitialized use and a potential buffer overflow that would be caught by ASan.
The if statement in Listing 5 demonstrates another optimization and the larger scope of this

problem. The code creates an instance of struct Foo with only the member variable a initialized.
The other member variable i is not initialized and used as the condition of the if statement. The
optimizer first splits up struct Foo into two values for each member variable. Then it replaces the
value of uninit.i with the placeholder value for uninitialized memory. Another optimization then
removes the branch with the uninitialized use and instead unconditionally causes the execution of
the printf call below. By removing the branch, the respective MSan failure is also removed.

Modeling of Pure Functions. LLVM has a notion of pure functions that cannot have observable
side effects. This allows the optimizer to reorder those functions or remove the calls entirely if the
result is not needed. During our testing we found that this approach can remove sanitizer checks
in two ways. First, due to LLVM’s internal knowledge of C standard library functions, it classifies
many of them as pure. However, this categorization ignores the fact that many of these functions
can lead to sanitizer errors when called with incorrect parameters. This leads to failing function
calls being removed when the optimizer considers their results unused. A similar issue occurs when

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:11

1 struct Foo {
2 int a = 1;
3 int i;
4 };
5 int main(int argc, char **argv) {
6 unsigned index;
7 // BUG: Uninitialized use.
8 printf("%s", argv[index]);
9

10 struct Foo uninit;
11 // BUG: 'i' is uninitialized.
12 if (uninit.i)
13 printf("Index not zero");

Listing 5. Several uses of uninitialized memory
which are removed by the optimizer.

1 static int shift = 100;
2

3 __attribute__((pure)) int ub() {
4 // BUG: shift value too large.
5 return 1 << shift;
6 }
7

8 int main(int argc, char **argv) {
9 // BUG: out-of-bounds read.
10 int i = memcmp("a", argv, 1000);
11 i = ub();
12 return i;
13 }

Listing 6. Buffer overflow and invalid shift which
are removed by the optimizer.

a user marks a function as pure via the pure attribute (a GCC extension). In this case, all sanitizer
checks are now considered undefined side effects and the optimizer may remove them.

For example, consider the two function calls in Listing 6. The call to memcmp could read memory
out-of-bounds, as its size parameter of 1000 is much larger than the length of the literal "a". Because
this standard library function is modelled as pure within Clang and the result is overwritten in the
next line, the optimizer deletes the call and the the underlying ASan check.
The ub function is marked as pure by the user and the compiler trusts this annotation. The

optimizer now assumes that ub has no side effects such as aborting the execution. However, the
function also performs a shift with a right-hand side operand that is larger than the bit width of
the left-hand side type. This is undefined behavior so UBSan inserts a check that will report this
error and abort the execution. Because the UBSan check is a side effect in a function assumed to be
pure, the check itself is now undefined behavior. In the final program the optimizer removes the
undefined UBSan check and substitutes the evaluation of ub() with an arbitrarily chosen value.

6.3 Root Causes of Clang’s Sanitizer-Eliding Optimizations
The distribution of the sanitizer-eliding optimizations we found shows that they mostly impacted
ASan and MSan checks, while UBSan checks mostly resisted being removed by an optimization.
We argue that there are two reasons why those two sanitizers have the most issues.

ASan/MSan Pass Placement. First, the placement of the ASan and MSan sanitization process after
Clang’s optimization pipeline is not optimal. This can be seenwhen comparing their implementation
to UBSan which sanitizes code before the optimization phase. UBSan injects many of its checks
as function calls that precede each sanitized operation. These function calls to non-inlineable
functions are mostly opaque operations from the perspective of the optimizer and are rarely
transformed during optimizations. While this effectively prevents various kinds of optimizations
from transforming code, it also is more resistant against sanitizer-eliding optimizations.

In contrast to UBSan, MSan and ASan cannot inject any similar checks until after all optimizations
have run. This means that each optimization pass is now required to explicitly preserve bugs during
the compilation phase. While a few optimization passes contain such code or comments indicating
that such code is needed, the vast majority of them do not make any attempt at preserving bugs.
A possible remedy for this would be to run the ASan and MSan sanitization process before the
optimizer. We evaluate this approach in Section 10.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:12 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

1 const int s = 64;
2 char *buf = (char *)malloc(s);
3 if (!buf) return 0;
4 for (unsigned i = 0; i <= s; ++i) {
5 char *x = buf + i;
6 *x = '\0';
7 }
8 return buf[0];

Listing 7. Program that produces only an ASan
error with UBSan enabled.

1 int uninit;
2 if (uninit + 1)
3 return 1;

Listing 8. Program that produces a report-free
binary with both MSan and UBSan enabled.

Sanitization via Function Interposition. The second root cause we found is reliance on runtime
function interposition to inject sanitizer checks into a program. For example, ASan does this to
catch memory leaks or undefined calls to C standard library functions. Like the late placement
of the ASan/MSan passes, this technique is vulnerable to transformations that replace calls to
interposed functions with code that does not perform the same sanitizer checks. However, there is
no straightforward solution for fixing this issue. The only way of resolving this is to either disable
the relevant optimizations, or to reimplement parts of ASan/MSan to no longer rely on function
interposition.

6.4 Results of Combining Different Sanitizers in Clang
Our test oracle compiles every test input separately with each tested sanitizer. However, Clang
allows combining some sanitizers when compiling a single executable. Specifically, Clang allows
combining either ASan or MSan with UBSan but rejects any sanitizer combination containing both
MSan with ASan. We found that combining sanitizers can influence how reliably the checks of a
single sanitizer can catch errors.

Combining ASan and UBSan. When combining ASan with UBSan in Clang we see greatly
increased detection rates for several previously missed bugs. The main reason for this is that the
injected UBSan checks effectively disable several kinds of optimizations that previously removed
ASan sanitizer failures.

The example in Listing 7 demonstrates a buffer overflow which ASan misses with optimization
level O2 or higher. However, the bug can be reliably detected if both UBSan and ASan are enabled.
The actual UBSan change that prevents the optimizer from optimizing away the buffer overflow is
the pointer overflow check injected into the expression buf + i. What is interesting about this
check is that it is redundant. No overflow can occur here with a compliant malloc implementation.

Combining MSan and UBSan. Clang’s MemorySanitizer implementation also supports being
combined with UBSan. However, with our fuzzer we found that this combination does not work
reliably even in unoptimized programs. Consider, for example, the code in Listing 8. MSan is able
to detect this trivial uninitialized use bug without optimizations. However, when UBSan is enabled,
the injected UBSan integer overflow checks around the addition seem to break the memory tracking
of MSan. We assume the root cause for these kinds of bugs is that the UBSan checks are incorrectly
marked by Clang as not needing any further sanitization. This blocks MSan from injecting its
checks that would detect the uninitialized variable.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:13

Table 1. Categorization of found bugs in Ubuntu and oss-fuzz.

Bug kind Ubuntu packages oss-fuzz projects
Memory leak 10 0

Uninitialized read 5 1
Buffer-overflow 0 1

Overlapping memcpy 1 1

6.5 Sanitizer-Eliding Optimizations in GCC
We also tested the sanitizers and optimizations in the GCC compiler. Our goal was to confirm
that sanitizer-eliding optimizations are a problem in other compilers and how well our approach
translates. We found 5 sanitizer-eliding optimizations with LookUB in GCC after a test run using
an estimated 30 000 CPU hours. The optimizations we found form a subset of the ones we found in
Clang. We also found that GCC in general implements fewer ASan checks. From the 17 sanitizer-
eliding optimizations in Clang, 6 affect sanitizer checks that do not appear to be implemented in
GCC.

6.6 Interaction with Compiler Warnings
Some sanitizer-eliding optimizations are caused by the compiler detecting undefined behavior. This
raises the questions whether compilers warn when these optimizations are applied and if these
warnings can replace the sanitizer checks. We found that neither GCC nor Clang can reliably emit
warnings for any of the sanitizer-eliding optimizations we found. In some cases, those warnings
are just not implemented in the compiler. Another reason is the different capabilities of optimizers
and the compiler warning engines. For example, while Clang’s optimizer can perform inlining
of functions, the built-in warning engine cannot. This causes the optimizer to detect and remove
bugs with the new information gathered from inlining, which is unavailable to the warning engine.
This divergence between optimizer and warning engine reaches its peak when enabling link time
optimizations. While the optimizer can use this to detect bugs even across source files, neither GCC
nor Clang implement support for emitting warnings during this step of the compilation phase.

7 IMPACT OF SANITIZER-ELIDING OPTIMIZATIONS
In this section, we evaluate whether sanitizer-eliding optimizations in Clang have an impact on the
quality of real-world software. For this, we searched for bugs in widely-used open-source software
that were hidden by sanitizer-eliding optimizations. Figure 1 summarizes our results.

7.1 Finding Hidden Bugs via Static Analysis
For some sanitizer-eliding optimizations found in Clang, we can detect the bugs they are hiding
via static analysis. We created an LLVM-based static analyzer designed to catch only bugs hidden
by sanitizer-eliding optimizations. We based our design on the known approach of injecting bug
detection logic into the optimization process [Wu et al. 2020]. Our static analyzer first detects when
a problematic optimization is applied and then checks whether the optimization is about to remove
an actual bug that would be caught by an enabled sanitizer.

Detecting Optimizations. To accurately detect when an optimization is applied, we implemented
the static analyzer inside LLVM’s optimization pipeline. For each relevant optimization, we em-
bedded a check that is executed directly before the optimization actually transforms the code. For
several types of bugs, we implemented a custom check that analyzes the IR and reports an error if
a potential bug has been detected. For this experiment we selected three types of bugs:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:14 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

(1) Removed memory leaks: This check intercepts the optimizer when it is about to remove
a heap allocation function such as malloc, calloc or new. The bug detection logic consists of
analyzing all uses of the to-be-removed pointer for any deallocation functions. If no deallocation
function is called on the allocated pointer, then we assume this memory is leaked.
(2) Removed uninitialized reads: This check intercepts the optimizer when it is about to replace
a value loaded from memory with an undef value (modeling unspecified values in LLVM). Our
check analyses the uses of the loaded value and determines if it is directly or indirectly used in a
conditional jump.
(3) Removed overlapping memcpy bugs: This check detects calls to memcpy with a size of 1, 2, 4
or 8 when they are transformed to a load and store (thereby removing overlapping memcpy checks).
The bug detection logic then uses LLVM’s alias analysis to check whether the copied memory areas
overlap.

Scanning Setup. We implemented our static analyzer in a custom Clang compiler version that
automatically analyzes all source code it compiles. We then repurposed the Ubuntu build system to
rebuild and scan all 24329 Ubuntu 20.04 software packages that contained C or C++ source files.
Each package is built with Clang’s -O3 optimization level and with link time optimizations, if the
package’s build system enabled them.

Reports. Our static analyzer generated 2700 bug reports distributed across 208 packages. Each
report contained the suspected bug that is being hidden, the function the bug was found in, and a
dump of the current LLVM IR within the optimizer. We semi-automatically analyzed these reports
to filter out various kinds of false positives and unreportable bugs.

False Positives. Most of the false positive reports for removed memory leaks were caused by
harmless memory leaks in programs. Examples for harmless memory leaks are single dynamic
allocation in a program’s main function or directly before a call to exit or abort. False positives
of uninitialized uses were usually caused by dead code that was not yet optimized out.

Bug Reporting. Several bug reports were not actionable for various reasons, and we could not
report bugs for them. For example, we found several bugs in packages where the developers
were unreachable. We also did not report bugs in packages where the bugs seem intentional (e.g.,
groff appears to not deallocate some of its allocated buffers in an attempt to simplify its memory
management code). We did not include these bugs in the final bug count.

Results. We found 16 new bugs in various open source projects including SANE, WINE, NTFS-3G,
httperf, and X11. Of these 16 bugs, 10 were memory leaks, 5 uses of uninitialized values, and 1 a
call to memcpy with overlapping source/target areas. 11 of these bugs have been fixed at the time of
writing or are scheduled to be fixed for the next release of the respective project.

7.2 Searching Elided Bugs via Fuzzing
In addition to our static approach, we used fuzzing to find previously hidden bugs in programs
with sanitizer-elided optimizations disabled. Unlike static analysis, this approach works reliably for
all our identified sanitizer-eliding optimizations.

Fuzzed Software Set. We reuse the fuzzing setup of the oss-fuzz project [Serebryany 2017] to
fuzz a large set of projects with minimal manual effort. We selected the 433 C or C++ projects in
oss-fuzz as the target of our fuzzing evaluation. All 433 projects support being fuzzed with Clang’s
ASan and 169 of them support being fuzzed by Clang’s MSan.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:15

1 int divisor = 1;
2 jmp_buf env_buffer;
3 if (setjmp(env_buffer) != 0)
4 // BUG: Potential division by 0.
5 return 2 / divisor;
6 divisor = 0;
7 // Jumps back to line 3.
8 longjmp(env_buffer, 1);

Listing 9. Program with unsanitized but opti-
mized behavior.

1 char *z = calloc(1, 4);
2 char *y = calloc(1, 2);
3 char *x = calloc(1, 4);
4 int res = *(x - 29) + *z;
5 free(x);
6 free(y);
7 free(z);
8 return res;

Listing 10. Program with ASan miss due to red-
zone alignment.

Fuzzing Setup. We disabled all optimizations to prevent sanitizer-eliding optimizations from
affecting the results. We built all 433 selected projects and fuzzed them with either ASan or MSan
enabled. We spent about 10,000 CPU hours fuzzing these projects, resulting in 424 crashing test
inputs. To filter out crashes that were not hidden by optimizations, we reran every crashing input
on a fuzz target built using the default set of optimizations. If an input triggers a sanitizer error in
the unoptimized project but the optimized project does not report an error, we concluded it is a
bug that was hidden by a sanitizer-eliding optimization.

Results. We found and reported 3 previously unknown bugs in the analyzed oss-fuzz projects.
(1) In the Linux container runtime LXC, we found an uninitialized value being used when

calculating the supported process capabilities of the host Linux kernel. The bug was optimized
out because this value was only used within an if-statement which was removed by a
sanitizer-eliding optimization. Based on the project’s git history, we estimate that this bug
was introduced 8 months before we discovered it.

(2) In the image processing library leptonica, we found a heap buffer overflow. This bug was
optimized out as the out-of-bounds read access was moved behind a bounds check. We
estimate this bug to be introduced 2 years before we discovered it.

(3) In the widely used MPEG-2 video stream library libmpeg2, we found a call to memcpy with
overlapping memory areas. This bug was optimized out due to the memcpy call moving 8
bytes of data which the optimizer lowered to a load and store instruction. According to the
oss-fuzz issue tracker, this bug was the first new oss-fuzz bug found in libmpeg2 in two years.
The bug appears to be present in the initial commit in the version control system which was
7 years before we discovered it. The same issue was concurrently discovered and reported to
Google by another security researcher.

8 THREATS TO VALIDITY
In this section, we discuss possible sources of false positives and how they can be avoided.

Unavoidable Sources of Nondeterminism. Our test oracle requires programs to be deterministic.
However, there are some rare sources of non-determinism even in programs that do not call any
non-deterministic external functions. For example, a randomly generated program could generate
a pointer that points to the code or data segment of the running program. As the compiler might
generate different segment contents on different optimization levels, the program execution can
take a different execution path depending on the read values.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:16 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

1 long *buffer;
2 size_t buffer_size;
3 long *allocate(long value) {
4 long *res = new long(value);
5 #ifdef DEBUG_PRINT
6 printf("DEBUG: alloc %p\n", res);
7 #endif
8 return res;
9 }
10 void func(long user_index,
11 long user_value) {
12 // Bounds check.
13 if (user_index < 0
14 || user_index >= buffer_size)
15 return;
16

17 time_t *t1 = allocate(time(NULL));
18 printf("TIME: %ld=", *t1);
19 delete t1;
20

21 long *t2 = allocate(0);
22 delete t1; // BUG: double-free.
23 long *index = allocate(user_index);
24 // BUG: Overwrites 'index' value.
25 *t2 = user_value;
26 printf("%ld\n", *t2);
27

28 // BUG: Buffer overflow.
29 buffer[*index] = user_value;

Listing 11. Bug exploitable depending on the configuration.

Generic Optimizer Bugs. Sanitizer-
eliding optimizations are not optimizer
bugs. They only change the semantics
of programs that contain bugs or unde-
fined behavior but are always valid when
applied to well-defined programs. Distin-
guishing a sanitizer-eliding optimization
from incorrect optimization is difficult as
it requires verifying that there is no well-
defined programwhere the same optimiza-
tion would perform an invalid transforma-
tion. While test cases in this category are
false positives for our purposes, we con-
sider detecting generic optimizer bugs in
general to be useful.

Probabilistic sanitizer checks. Some
sanitizers are susceptible to false nega-
tives which can be induced by valid opti-
mizations. For example, AddressSanitizer
uses redzones between allocations to track
buffer overflows and out-of-bound mem-
ory accesses that do not touch these red-
zones are not detected. Given that both
heap and stack allocations might be re-
moved or rearranged by optimizations, it
is possible that the allocations in the opti-
mized binary are arranged in a way that
causes an AddressSanitizer false negative.

Consider the example in Listing 10. Line
4 contains a buffer overflow as the pointer
x - 29 points outside the allocation cre-
ated in line 3. ASan is able to catch this buffer overflow without optimizations as it touches a
redzone area around the buffer y. However, the buffer y is unused and will be optimized out on
optimization level O1. This causes the memory layout in the optimized binary to shift so that buffer
z is now in the memory area that is accessed by the out-of-bounds write. Because this buffer is not
a redzone, ASan is unable to detect this out-of-bounds write and the respective sanitizer failure
appears to be optimized out. However, it is possible to filter out these false positives by, for example,
rerunning test cases while randomizing the redzone size.

Difference in Resource Consumption. Compiler optimizations in most programming languages
are allowed to remove memory allocations on heap and stack. Running out of available stack or
heap memory is treated by all sanitizers as a bug that will be reported. It is therefore possible that
an unoptimized binary consumes more memory than available and fails with a sanitizer report,
while the optimized binary consumes less memory than available and reports no error. We do
not consider optimizations that reduce memory consumption as sanitizer-eliding even though
they violate the test invariant of our test oracle. The reason for this is that this would otherwise
designate a large subset of optimizations in modern compilers as sanitizer-eliding.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:17

Our workaround for these false positives consists of increasing or decreasing the amount of
available stack and heap space when repeatedly executing binaries. Test programs that only violate
our invariant for some memory limits are declared as false positives.

Unsanitized Undefined Behavior. A program can contain behavior that is not well-defined and
not detectable by a sanitizer but still exploited by the optimizer. This means that the optimized
version might take a different execution path which does not reproduce the sanitizer report. In
our test oracle this would lead to a false positive report that a sanitizer-eliding optimization has
been detected. For example, Listing 9 demonstrates undefined behavior that is removed due to
an unsanitized bug. Line 6 changes the value of the local variable divisor and then performs a
longjmp to a previous point in the execution, which leaves the value of divisor indeterminate.
The value of divisor is afterwards used as the divisor in line 5, which is checked by Clang’s and
GCC’s UBSan implementation to be non-zero. No current sanitizer detects that the indeterminate
value of divisor is used. However, GCC and Clang’s optimizers rely on the value of divisor not
being allowed to change and replace the division in line 5 (and the associated sanitizer check) with
a constant value of 2.

Even though we did encounter several such cases during our testing, it is possible to filter them
out via adjustments to the compiler (e.g., disabling the relevant optimization) or code generator
(e.g., do not generate calls to longjmp for the example above). Additionally, these test cases can
be considered useful for the purpose of finding mismatched capabilities between optimizers and
sanitizer. E.g., we found that Clang removes write accesses to constant memory buffers but offers no
sanitizer that can detect this behavior. This compiler feature was hiding crashes in Busybox [Wells
2000] and the jackd audio daemon.

9 REACTIVATING ELIDED BUGS
The sanitizer-eliding optimizations in GCC and Clang often remove sanitizer checks alongside the
underlying security issue. For example, removed memory leak checks in both compilers are caused
by the respective heap allocation being removed from the program. In this section, we discuss how
these hidden bugs can still impact the security of applications. The essential step in exposing an
application with an elided bug is for the developer themselves to unintentionally reactivate the bug.
We identify three likely scenarios how this could happen. Each real bug we found (see Section 7)
can be reactivated using at least one of the described scenarios.

Example Vulnerable Program. Listing 11 shows a C++ program containing a double free bug.
The two attacker-controlled user_* parameters are used to set the value inside bufferwith a given
index. The buffer access itself is guarded by a bounds check, which prevents a buffer overflow.
However, the dynamic memory stored in t1 is deallocated twice, leading to t2 pointing to the
memory of index on a system using glibc. This means that the attacker now controls both the
address and value of an unrestricted write operation. This code is not reported as a double free bug
by Clang/ASan as all three dynamic allocations and the associated double-free bugs are optimized
out at O2. The optimized program then behaves as intended. However, the bug can be reactivated
by minor changes.

UsingDifferent Compilers.Different compilers interpret undefined behavior in various ways, and
this affects sanitizer-eliding optimizations [Wang et al. 2013]. This can leave a program exploitable
in a production environment, despite being sanitized and tested extensively. For example, only
Clang will remove the double free bug in our example on optimization level O1 while GCC keeps
the program vulnerable on the same optimization level.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:18 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

Changing the optimization level. The bug can also be reactivated by changing just the opti-
mization level. For example, if this application was compiled using GCC using optimization level
O2, it would not contain a double free bug. However, by switching to optimization level O1, the
double free bug is no longer optimized out and becomes exploitable. In practice there is no clear
defined optimization level that is consistently used in production or testing. E.g., oss-fuzz usually
uses optimization level O1 while the popular fuzzer AFL++ uses O3 by default.

Activating UBSan. As discussed in Section 6.4, UBSan effectively disables most optimizations due
to the checks it inserts at the start of the compilation process. While this is in general beneficial to
the bug discovery process, it can be detrimental to the security of a program. The double free bug
in our example is not exploitable on optimization level O2 using Clang. However, when compiling
the program with the same settings and UBSan enabled, the optimizer is no longer able to remove
the double free bug and it can be exploited by an attacker.

Minor code changes. In its current state the code is highly unstable and even small changes
can reactivate the bug. For example, a developer might be tempted to re-enable the printf call
within #ifdef DEBUG_PRINT to better understand how memory is allocated in a production setup.
However, this change disables the sanitizer-eliding optimization and reactivates the double-free
bug on all optimization levels.

10 PERFORMANCE IMPACT OF FAILURE-PRESERVING SANITIZERS
Sanitizer-preserving optimizations trade off performance against detection rate. We evaluate two
approaches for avoiding these optimizations in Clang to demonstrate their performance impact.

10.1 Implementation
In this section, we present the two sanitizer-preserving compilers we created. Both compilers no
longer contain any of the sanitizer-eliding optimizations described in Section 6.

Early ASan/MSan Pass. The first approach is based on our suggestions from Section 6.3. For this,
we created a custom Clang version in which we moved the ASan/MSan passes to the front of the
optimization pipeline. This resolves the sanitizer-eliding optimizations we found for load/store
instrumentation. We also disabled a small group of optimizations which remove calls to interposed
C standard library functions. This required 4 lines of code to be changed in Clang.

Targeted Changes Guided by LookUB.With the second approach, we resolved each sanitizer-
eliding optimization we identified via LookUB manually. Each change consists of removing a small
part of an existing optimization pass or surrounding it with an additional check (e.g., by checking
that there is no bug in a piece of code before it is transformed). In total, we changed about 300 LoC
within this version of Clang.

10.2 Evaluation Setup
The benchmarking environment consists of a workstation with an Intel i7-8700K and 64 GB of
memory. We compare our two custom Clang versions against a default Clang as the baseline.

10.3 Changes to SPEC CPU2006
SPEC CPU2006 contains several programming errors that result in sanitizer reports when processing
the reference input. By default, these abort the program or incur additional performance overhead.
As such, we applied two patches to our version of SPEC CPU2006 to fix the detected ASan and
MSan failures. We benchmarked SPEC CPU2006 with and without our patches to ensure they did
not influence the run time to a meaningful degree (i.e., no change above 1% for any benchmark).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:19

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300

Default ASan (O2)
Targeted ASan changes (O2)

Early ASan pass (O2)
Default ASan (O0)
Default MSan (O2)

Targeted Msan changes (O2)
Early MSan pass (O2)

Default MSan (O0)

91%

134%
95%

380%
163%

342%
167%

1,210%

Overhead in % (geomean)

Fig. 3. SPEC CPU2006 overhead with ASan or MSan.

10.4 Benchmarking Results
Figure 3 shows the overhead of running ASan and MSan with each of the tested compilers. The
baseline is the SPEC CPU2006 score without any sanitizers using the optimization level O2. The
“Default” configuration is using an unmodified version of Clang 14 using the specified optimization
level. The “Early pass” and “Targeted changes” configurations use our custom Clang versions as
described in Section 10.1 using the O2 optimization level.

No Optimizations. Disabling all optimization using the O0 optimization level is a trivial solution
for avoiding sanitizer-eliding optimizations. The large overhead in our benchmarks (up to 12.1 for
MSan) shows that this approach is not viable in practice.

Early ASan/MSan Pass. As expected, the results show a large increase in overhead when moving
the sanitization passes to the front of the pipeline. For instance, MSan’s overhead more than doubles.
When inspecting the generated code, we found that many redundant checks injected by these
sanitizers were not removed by the optimizer, thereby degrading performance.

Targeted Changes. Our Clang version with a small set of targeted changes increases the overhead
by only 4% when compared to default ASan. The generated code in this configuration is often
similar to the one in ASan’s default configuration, as most optimization passes run as expected.
This shows that sanitizer-eliding optimizations do not provide major performance benefits and can
be safely disabled in security testing scenarios.

Threats to Validity. Our measured overhead is that of a Clang version with a manually created
sanitizer-preserving optimizer, based on the sanitizer-eliding optimizations we found. However,
unknown (or future) sanitizer-eliding optimizations might require further changes, which could
degrade performance. At the same time, existing changes within our tested Clang version could be
too restrictive and disable optimizations when they do not actually elide a sanitizer failure.

11 RELATEDWORK

Detecting undefined behavior.Wang et al [Wang et al. 2013] introduce the notion of unstable
code; a code segment is called unstable, if a compiler may discard it under the assumption that
undefined behavior cannot occur. Unstable code may be removed by the compiler and therefore may
lead to a sanitizer-eliding optimization. [Wang et al. 2013] finds unstable code with a static analyzer
called STACK which detects code fragments that can potentially be removed (or simplified) when
assuming the absence of undefined behavior. Their method requires a precise semantic modeling
of when undefined behavior may occur, which may be difficult, especially for advanced cases like
undefined behavior linked to uninitialized memory, compiler extensions, floating point or standard

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

143:20 Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus von Gleissenthall

library functions. In contrast, LookUB directly relies on sanitizers to detect undefined behavior.
This allows LookUB to directly test existing production compilers and their optimizers without
requiring an often extensive formal specification of undefined behavior.

Compiler Testing. While previous work [Le et al. 2014; Livinskii et al. 2020; Yang et al. 2011]
proposed differential testing of compilers using different optimization levels, their test oracles
relied on the generated programs being free of undefined behavior. This was necessary to make the
program behavior on different optimization levels comparable. LookUB’s solution to comparing
program behavior with undefined behavior is to detect it using sanitizers checks.

Sanitizer Testing. YARPGen [Livinskii et al. 2020] is a random program generator that generates
programs free of undefined behavior. Even though it was primarily designed to test optimizations
via differential testing, it can also be used as a tool for finding false positives in sanitizers. YARPGen
solves the test oracle problem by verifying that the programs it generates are free of undefined
behavior. Because all generated programs are well-defined, every sanitizer report that is generated
when running a YARPGen program can be concluded to be a false positive. However, YARPGen
cannot test sanitizers for false negatives as it is not designed to generate programs with the specific
types of undefined behavior covered by the sanitizer.

Sanitizer Optimizations.While alternative optimizations approaches for sanitizers have been
proposed [Wagner et al. 2015; Zhang et al. 2021], most of them do not guarantee preservation of
sanitizer failures. One exception to this is ASAN--[Zhang et al. 2022], which implements several
ASan-specific optimizations and verifies each optimization using formal techniques.

12 CONCLUSION
We presented LookUB, a differential testing based approach to systematically find sanitizer-eliding
optimizations that hide bugs in programs. LookUB generates test programs using random program
mutation and compiles them with sanitizers at different optimization levels. After running the
binaries, any difference in the sanitizer failure reports reveals the presence of sanitizer-eliding
optimizations. In our evaluation, we showed that such optimizations exist in modern production
compilers such as Clang and GCC. Moreover, we demonstrated that the optimizations hide bugs in
real software and described how they can be found via fuzzing or static analysis. Finally, we evaluated
the performance impact of sanitizer-eliding optimizations and found that their contributions are
insignificant. In conclusion, we recommend that standard optimization settings should preserve
sanitizer checks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. This work was supported by EKZ through
the AVRMemo project, by Intel Corporation through the Allocamelus project, and by NWO through
projects Theseus and INTERSECT.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

Don’t Look UB: Exposing Sanitizer-Eliding Compiler Optimizations 143:21

ARTIFACT AVAILABILITY
All software artifacts are available on Zenodo [Isemann 2023]. The artifact contains a docker
image with an instance of LookUB, our static analyzer and our oss-fuzz instance. It also contains
instructions for each section on how to reproduce our experiments. LookUB is also available under
an open source license on GitHub: https://github.com/vusec/LookUB.

REFERENCES
Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian Österlund, Cristiano Giuffrida, and Leonardo

Querzoni. 2021. Who’s debugging the debuggers? exposing debug information bugs in optimized binaries. In ASPLOS.
Raphael Isemann. 2023. Artifact for "Don’t Look UB". https://doi.org/10.5281/zenodo.7684001
Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. 2020. {FuZZan}: Efficient Sanitizer Metadata Design for

Fuzzing. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). 249–263.
Yue Jia and Mark Harman. 2008. MILU: A Customizable, Runtime-Optimized Higher Order Mutation Testing Tool for the

Full C Language. In Testing: Academic & Industrial Conference - Practice and Research Techniques (taic part 2008). 94–98.
https://doi.org/10.1109/TAIC-PART.2008.18

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In PLDI.
Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen. In

OOPSLA. 1–25.
Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation. In

PLDI. 89–100.
Duy Loc Phan, Yunho Kim, andMoonzoo Kim. 2018. Music: Mutation analysis tool with high configurability and extensibility.

In ICSTW.
Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for open source software. USENIX Security -

Invited Talk.
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address

Sanity Checker. In USENIX ATC.
Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn Volckaert, Per Larsen, and Michael Franz. 2019. SoK:

Sanitizing for security. In IEEE S&P. IEEE, 1275–1295.
Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast detector of uninitialized memory use in C++. In

CGO. IEEE, 46–55.
Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes Kinder. 2015. High system-code security with low

overhead. In IEEE S&P. IEEE, 866–879.
Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek. 2012. Undefined behavior:

what happened to my code?. In ApSys. 1–7.
Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013. Towards Optimization-Safe Systems:

Analyzing the Impact of Undefined Behavior. In SOSP.
Nicholas Wells. 2000. Busybox: A swiss army knife for linux. Linux Journal 2000, 78es (2000), 10–es.
Zekai Wu, Wei Liu, Mingyue Liang, and Kai Song. 2020. Finding Bugs Compiler Knows but Doesn’t Tell You: Dissecting

Undefined Behavior Optimizations in LLVM. (2020). BlackHat Europe.
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI.

283–294.
Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong Su. 2021. {SANRAZOR}: Reducing Redundant Sanitizer

Checks in {C/C++} Programs. In OSDI.
Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Triandopoulos, and Jun Xu. 2022. Debloating Address Sanitizer.

In Usenix Security Symposium.

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 143. Publication date: June 2023.

https://github.com/vusec/LookUB
https://doi.org/10.5281/zenodo.7684001
https://doi.org/10.1109/TAIC-PART.2008.18

	Abstract
	1 Introduction
	2 A motivating example
	3 Background
	4 LookUB: Automatically finding sanitizer-eliding optimizations
	4.1 Scheduler
	4.2 Mutator
	4.3 Test Oracle
	4.4 Fitness Function

	5 Implementation
	5.1 Mutator
	5.2 Scheduler
	5.3 Test Oracles and Fitness Function

	6 Sanitizer-Eliding Optimizations in Clang and GCC
	6.1 Clang Test setup
	6.2 Sanitizer-Eliding Optimizations in Clang
	6.3 Root Causes of Clang's Sanitizer-Eliding Optimizations
	6.4 Results of Combining Different Sanitizers in Clang
	6.5 Sanitizer-Eliding Optimizations in GCC
	6.6 Interaction with Compiler Warnings

	7 Impact of Sanitizer-Eliding Optimizations
	7.1 Finding Hidden Bugs via Static Analysis
	7.2 Searching Elided Bugs via Fuzzing

	8 Threats to Validity
	9 Reactivating elided bugs
	10 Performance Impact of Failure-preserving Sanitizers
	10.1 Implementation
	10.2 Evaluation Setup
	10.3 Changes to SPEC CPU2006
	10.4 Benchmarking Results

	11 Related work
	12 Conclusion
	References

