
Triereme: Speeding up hybrid fuzzing through efficient query
scheduling

Elia Geretto∗

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

e.geretto@vu.nl

Julius Hohnerlein∗

Vrije Universiteit Amsterdam
Amsterdam, the Netherlands
julius.hohnerlein@posteo.de

Cristiano Giuffrida
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

giuffrida@cs.vu.nl

Herbert Bos
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

herbertb@cs.vu.nl

Erik van der Kouwe
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

vdkouwe@cs.vu.nl

Klaus v. Gleissenthall
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

k.freiherrvongleissenthal@vu.nl

ABSTRACT

Hybrid fuzzing, the combination between fuzzing and concolic exe-
cution, holds great promise in theory, but has so far failed to deliver
all the expected advantages in practice due to its high overhead.
The cause is the large amount of time spent in the SMT solver. As
a result, hybrid fuzzers often lose out to simpler, yet faster tech-
niques. This issue remains despite novel query pruning techniques
that reduce the number and complexity of solver queries as they
preclude other crucial optimizations like incremental solving.

We introduce Triereme, a method to speed up the hybrid fuzzer’s
concolic engine by reducing the time spent in the SMT solver. Tri-
ereme uses a trie (or prefix tree) data structure to schedule and
cache solver queries, exploiting common prefixes. This design is
made possible by decoupling concolic tracing from concolic solving.
As a result, Triereme manages to reconcile pruning with incremen-
tal solving, reaping their combined benefits. In our tests, Triereme
speeds up concolic executions by 6.1x on average in FuzzBench [22]
and improves coverage progress in 79% of the benchmarks.

CCS CONCEPTS

• Security and privacy → Software security engineering; •
Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

Despite the intuitive advantages, few fuzzing projects outside of
academic research adopt hybrid fuzzing, the combination of fuzzing
and concolic execution [27]. In theory, this combination is attrac-
tive: fuzzers can quickly explore code with simple branches that
are likely to flip with random inputs, while concolic engines can
use SMT solvers to solve the more complex cases, too hard for tradi-
tional fuzzers. However, in practice hybrid fuzzers are often outper-
formed by simpler, yet faster techniques [1] because the overhead
of concolic execution cancels out any potential gains. To realize
hybrid fuzzing’s promise, we need to speed it up [8, 23, 24, 32].

After removing important bottlenecks in the construction and
management of symbolic expressions [8, 23, 24], the bulk of the
overhead is now due to the time spent in the SMT solver [32]. Indeed,
our experiments show that in our baseline configuration, solving
takes up 59% of concolic execution on average. To reduce the impact
of the solver, the community proposed various pruning techniques
to simplify and reduce the number of SMT solver queries [7, 9, 32].
Yet, the overhead remains. Indeed, despite being overall beneficial,
pruning and simplification preclude the use of incremental solving,
which is a key ingredient for solver performance [28].

In this paper, we propose Triereme, a concolic execution engine
that reduces the time spent running the SMT solver by introducing
a new way to organize solver queries based on a trie (or prefix tree)
data structure [4]. This reorganization, made possible by decoupling

tracing and solving in separate processes, allows Triereme to make
optimal use of the solver’s incremental solving capabilities, even
when combined with modern pruning and simplification meth-
ods [7, 9, 32]. Finally, the trie also caches query results between
different concolic executions, enabling further optimizations.

In our implementation, Triereme reduces the time spent using
the SMT solver by 63% on average in FuzzBench [22] and achieves
a speedup of up to 15.2x for the complete concolic execution over
our SymCC baseline. As a result, Triereme improves coverage or
the speed at which we reach coverage in 79% of the benchmarks.

In summary, we make the following contributions:
• We present Triereme, a new trie-based approach to solve the

query scheduling problem for concolic execution engines.
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bool is_sorted(size_t *a, size_t n) {
for (size_t i = 0; i + 1 < n; i++) {

if (a[i] > a[i + 1]) {
return false;

}
}
return true;

}

Listing 1: A function that checks whether an array is sorted.

1 >= n
1 < n && a[0] > a[1]
1 < n && a[0] <= a[1] && 2 >= n
1 < n && a[0] <= a[1] && 2 < n && a[1] > a[2]
1 < n && a[0] <= a[1] && 2 < n && a[1] <= a[2]

&& 3 < n

Listing 2: Query schedule generated by a concolic execution

of Listing 1 with the array [1,2,0].

• We implement a prototype of Triereme, which we will open
source (and submit for artifact evaluation) upon acceptance.
• We evaluate the effectiveness of our approach, comparing it

with an improved SymCC baseline and AFL++, a state-of-the-
art fuzzer. It achieves up to 15.2x speedup over our baseline,
with better coverage progress in 79% of the benchmarks.

2 BACKGROUND: CONCOLIC EXECUTION

Concolic execution is a dynamic analysis technique that instru-
ments a concrete execution to create symbolic expressions for each
variable in the program. These expressions form the symbolic state.

As in symbolic execution, the concolic engine collects constraints
over the symbolic state at every branch. These constraints describe
the current control-flow path through the program. Unlike symbolic
execution, though, a concolic engine does not fork on branches
to explore both alternatives, but instead only follows one path—
that of the concrete execution. To explore the alternative branch,
it produces a new test case that satisfies the path constraint for
the alternative outcome of the branch, i.e., by conjoining the past
constraints leading up to the branch with the negation of the current
branch constraint. When executing this new test case, the concrete
execution will follow the alternative path, increasing coverage [15].

Importantly, existing instrumentations solve the constraints by
querying an SMT solver such as Z3 [11] inline, that is, as soon
as a new branch is encountered. This approach produces a query
schedule that is dependent on the execution flow.

As an example, consider Listing 1 and a concrete execution that
calls is_sorted() with the array [1,2,0], leading to the path
constraints in Listing 2. The constraints progress along the pattern
¬𝐴, 𝐴∧¬𝐵, 𝐴∧𝐵∧¬𝐶 , etc. Apart from the last branch constraint,
the schedule has a common prefix that grows with every branch.

Incremental solving. The repetition of the prefix for a single
execution has allowed the authors of earlier concolic execution
engines such as Driller [27] and S2E [10] to reduce the amount
of time spent solving through incremental solving, which allows
the SMT solver to reuse lemmas learned from previous similar

1 >= n
a[0] > a[1]
1 < n && 2 >= n
a[0] <= a[1] && a[1] > a[2]
1 < n && 2 < n && 3 < n

Listing 3: Query schedule generated by using the unrelated

constraint elimination technique on the query schedule in

Listing 2.

queries [32]. In particular, SMT solvers are capable of pushing and
popping specific states on an assertion stack. The assertion stack
makes it easy to go from, say, 𝐴∧¬𝐵 to 𝐴∧𝐵 ∧¬𝐶 by (1) pushing
𝐴, (2) pushing ¬𝐵, (3) popping ¬𝐵, and pushing 𝐵 ∧ ¬𝐶 , which
can then be solved using the knowledge obtained earlier from 𝐴.

Any changes to the common prefix require resetting the solver
state, leading to the loss of all knowledge acquired up to that point.
Thus, incremental solving highly depends on the order in which
the path constraints are solved.

Constraint filtering. Limiting the number and complexity of
queries is important to limit the amount of time spent running
the SMT solver. For instance, other works [24, 25, 32] use a cover-
age map to eliminate redundant queries across executions and limit
the complexity of queries by removing unrelated constraints (i.e.,
constraints that transitively do not share any variables with the
current path constraint we want to flip). Although this technique
may result in the production of some useless test cases, it ensures
performance gains that guarantee better coverage overall [32].

Applying this technique for complexity reduction to the queries
in Listing 2 would produce the query schedule in Listing 3. While
the reduction in query complexity produces overall faster solving
times than the naive solution, the speedups are not significant
enough to eliminate SMT solving as the bottleneck. Additionally,
the elimination of the constraints also destroys the shared prefix
which stops us from reaping the benefits of incremental solving.

3 OVERVIEW

In this paper, we propose Triereme, a concolic engine that reduces
the time spent running the SMT solver based on two main steps.
First, like SAGE [16], Triereme decouples the construction of solver
queries (the tracing phase) from their execution (the solving phase).
This way, query schedules are not bound by the execution flow, as
with inline concolic execution engines. This allows us to transfer,
reorder, and store solver queries and their results within and across
executions. For example, Triereme can avoid solving a query if
the same query was already issued previously or if the query is an
extension of a query that was previously judged unsatisfiable.

Second, Triereme organizes and solves queries using a trie (or
prefix tree) data structure which allows it to make optimal use of
incremental solving. Our trie traversal algorithm manipulates the
assertion stack at each trie node so that the solver can always
exploit common prefixes. As a result, Triereme can use path con-
straint filtering techniques implemented in many symbolic and
concolic execution engines [7, 9, 32], such as the elimination of un-
related constraints, without suffering from their main performance
drawback: the inability to use incremental solving.
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Figure 1: Conceptual information flow in inline (left) vs. decoupled/Triereme design (right). By moving the scheduler and

the SMT solver into the Coordinator, Triereme optimizes the schedule while preserving incremental solving. Small boxes

represent components, and large ones processes. Arrows represent information flow, where black, blue, and green indicate

where we use heap memory, the file system, and shared memory as the information medium respectively. Small dashed boxes

are unchanged.

Figure 1 shows the main steps performed in our engine, includ-
ing the changes that decouple the construction of solver queries
from their execution. The input scheduling portion of the execution
loop is the same as in the inline design. A test case is taken from
the queue and fed to the instrumented program under test. The
main difference starts in the instrumentation itself. In the inline
design, the instrumentation constructs symbolic expressions, pro-
duces solver queries, and uses the SMT solver to find solutions, in
lock-step with the concrete execution. The output of the instru-
mentation is a series of candidate test cases that will be filtered.
Instead, in the decoupled design of Triereme, the concolic exe-
cution gathers symbolic expressions for the branch constraints
and streams them in serialized form to the coordinator through
shared memory. Once the program under test finishes executing,
the scheduler deserializes the expressions in its own address space
and processes the resulting branch constraints according to its path
simplification strategy; it then organizes branch constraints into a
trie data structure that it uses to schedule constraint queries to the
SMT solver. The engine produces candidate test cases only at this
point. Finally, Triereme filters the candidates to verify that they
indeed produce new coverage, as in the inline design.

4 DESIGN

This section discusses Triereme’s constraint processing pipeline,
the trie data structure used to store path constraints, and the opti-
mizations enabled by the trie. Unlike existing work, our pipeline
processes new path constraints centrally, allowing us to reason over
the entire set of constraints and schedule solving more efficiently.

4.1 Constraint Processing Pipeline

While running the target program, Triereme gathers path con-
straints to later target conditions that can flip branches encountered
along the way. Triereme’s constraint processing pipeline extracts
branch constraints from the target program, filters, and assembles

them. Afterwards, we insert these constraints into our trie data
structure for solving and caching (see 4.2).

Tracing. Triereme instruments the target program by inserting
calls to its runtime library, which collects expressions based on
the symbolic values of variables. While we are only interested in
branch constraints, Triereme instruments all instructions, as any
operation might affect a later branch constraint. Branch constraints
are specifically marked as such. From here, the expressions are
passed to the serialization part of Triereme.

Triereme concretizes expressions that likely belong to loops
during tracing. It identifies these expressions by keeping a hitcount
map for basic blocks, so that it can detect basic blocks that have
been traversed multiple times. This step has proven effective in
QSYM, and in the case of Triereme it helps limit the amount of
data transferred between the tracer and scheduler.

Serialization. In an inline design, path constraints are immedi-
ately solved in the process where they were collected. To decouple
tracing and solving, Triereme instead serializes the expressions
to pass them to its scheduling component. We designed a novel
serialization format that is simple, space-efficient, and minimizes se-
rialization and transmission overhead. The format is also resilient to
the target abruptly ending execution, which is expected in fuzzing.

Figure 2 shows an example of the encoding of a concolic trace
using this format. Expressions are serialized as they are encoun-
tered, in program execution order; this guarantees that the sub-
expressions that are used to construct a new expression are always
already present in the trace. We retrieve the expressions referenced
using SymCC, which uses local variables to track expressions in
local variables, and shadow memory to track expressions in heap
memory [24]. We refer to sub-expressions of a new expression using
an offset that provides the relative position of the sub-expression
in the serialized expression stream. Since sub-expressions typically
refer to recent nodes in actual executions, the offset is usually small.
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if (inp[13] == 0) {
// ...

}

(a) A snippet of C code,

[0]: Constant(value=0, bits=8)
[1]: Input(offset=13, value=1)
[2]: Equals(l=[-2], r=[-1], taken=false)

(b) ... its serialized form,

Equals(taken=false)

Input(offset=13, value=1)

Constant(value=0, bits=8)

(c) ... its AST representation during a concolic execution.

Figure 2: The serialization format by example. The implicit running identifiers are shown at the beginning of each line in

Figure 2b, next to the expression that they identify.

In combination with variable-length integer encoding, the small
offset means that the tracer can encode a typical binary operation
in just 3 bytes (1 byte for the operation and 1 byte each for the
operands). The last line in Figure 2b demonstrates the use of offset
references. This expression references the previous two expressions,
offset -2 on the left-hand side and offset -1 on the right-hand side.
During our development, we observed trace sizes of about 1 MB on
average and 5 MB maximum.

Path constraint construction. The instrumentation sends serial-
ized constraints to our scheduler process, which deserializes the
constraints into Abstract Syntax Trees (ASTs), one per expression
(see Figure 2c). This encoding is loosely based on LLVM IR.

To save memory, we fold constants in expressions when possible,
similarly to [2]. In addition, their deserialization does not happen in
isolation: when processing a new expression, the engine has already
deserialized all of its sub-expressions. We reuse existing AST nodes
where possible, effectively deduplicating sub-expressions.

At this point, the engine assembles branch constraints into path
constraints for unexplored branches. This assembly is done by
appending the appropriate negated branch constraints in order to
obtain ¬𝐴, 𝐴∧¬𝐵, 𝐴∧𝐵 ∧¬𝐶 , etc., as described in Section 2. The
rest of the pipeline conceptually operates on these path constraints
instead of expressions that make up each branch constraint.

Branch pruning. Not all path constraints are worth exploring.
We avoid targeting branches that a test case has already covered.
To achieve this, Triereme maintains a map of the total coverage
across all concolic executions. We only keep branch constraints of
explored branches to serve as a pre-condition for nested branches.

Path simplification. If a branch was not discarded, Triereme
simplifies its associated path constraint according to the unrelated
constraint filtering (see Section 2). Finally, Triereme inserts the
simplified path constraints associated with interesting branches
into the solver trie, and starts the solving phase. This pipeline is
guaranteed to run at least every 90 s, the same as QSYM’s execution
timeout, even if the trie still has path constraints to be solved. This
limit ensures a continuous supply of new path constraints which
refer to new test cases; solving these new path constraints is more
likely to help the fuzzer paired with the concolic engine as they
are more likely to refer to conditions that the fuzzer has not been
autonomously able to solve yet.

Discussion. Our decoupled design trades a small additional over-
head, produced by the storage and transmission of constraints
between processes, against a significant increase in flexibility. The
traditional inline design uses very short-lived constraints that have

to be processed as they are encountered. Although this reduces
resource usage when tracing, it forces a specific query schedule
and does not allow constraints or results to survive between execu-
tions. Our decoupled design, instead, uses long-lived constraints,
which are more expensive to keep in memory, but can be easily
reorganized and cached, as they survive individual concolic execu-
tions. Paying the price of additional flexibility is convenient only
when this flexibility enables a performance benefit that covers the
overhead, as we will show is the case for Triereme.

Keeping constraints in memory may seem infeasible due to the
large number of expressions generated by a single execution. How-
ever, prior work [32] shows that aggressive expression pruning is
necessary to make solving practical even in the more space-efficient
inline design. Triereme shows that its pruning and deduplication
can keep memory pressure low enough to be practical, even when
combining constraints across executions. In our experiments, we
have observed a maximum memory usage of 8.7 GB (see Table 7).

4.2 Trie-Based Solver Scheduling

Triereme exploits its decoupled design by introducing a scheduler
based on the trie data structure. The trie organizes path constraints
in a tree that maintains the following invariant: for any node in the
tree, its children do not share a common prefix. This means that for
any two path constraints with a common prefix, the prefix must
correspond to a unique path through the graph. Scheduling queries
using a depth-first search traversal thus guarantees optimal use of
the single assertion stack available for incremental solving. The
trie also helps in limiting memory usage as it shares internal nodes
among path constraints that share prefixes.

Figure 3 shows a trie representation of the query schedules in
Listing 3. Path constraints are stored in the trie as paths from the
root to a node in bold; we call these bold nodes path terminators. The
trie will contain one path terminator node per branch we are trying
to solve, representing the negated branch constraint. All leaves
must be path terminators, while interior nodes may or may not be
path terminators. An interior node can become a path terminator if
there is a path constraint that is a prefix of another path constraint.

Using the trie, Triereme schedules path constraints using Algo-
rithm 1. The algorithm performs a depth-first traversal of the trie,
restoring the solver state of each intermediate node before explor-
ing any of its sub-tries. We achieve this by pushing the solver state
onto the assertion stack before exploring a sub-trie and popping
it immediately afterward. The engine produces a new candidate
test case for each satisfiable constraint. We measure the resulting
reduction of the length of path constraints in Section 6.
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1 >= n 1 < n

2 >= n 2 < n

3 < n

a[0] > a[1] a[0] <= a[1]

a[1] > a[2]

Figure 3: Constraint trie for query schedule in Listing 3. The nodes along all paths from the root to a node with a thick border

represent a solver query, with each node along the path being a pre-condition to its successor.

Algorithm 1 Schedules the solver given a trie of constraints. Calls
are modelled after the Z3 API, thus PUSH and POP refer to the
assertion stack.

function solve(node, results={})
if node.is_path_terminator then

results← results ∪ { check( ) }
end if

for child ∈ trie_node.children do

push( )
assert(node.constraint)
solve(child, results)
pop( )

end for

end function

4.3 Trie-Based Optimizations

Apart from incremental solving, the trie data structure enables
other advanced caching and scheduling optimizations that are not
viable in a traditional inline concolic engine.

Satisfiability result caching. For each path constraint, we store
whether it is either unsolved, solved and unsatisfiable, or solved and
satisfiable, along with the solution (where applicable). This informa-
tion allows us to recall a solution efficiently if a duplicate satisfiable
query is inserted or to detect early that a query is unsatisfiable.

Duplicate queries are possible despite the branch pruning step
discussed in Section 4.1 because the pruning happens before path
simplification, which eliminates portions of the path constraints.
As a consequence, branches that have different addresses in the
target program may result in the same simplified path constraint.

Unsatisfiability derivation. Path constraints assume the form
𝐴 ∧ 𝐵 ∧ ..., where 𝐴, 𝐵, ... are branch constraints. When a path con-
straint is an extension of another constraint that has been proven
unsatisfiable, we can conclude that the extension will also be un-
satisfiable, as the ∧ operator can only restrict the solution space.
Reconstructing path constraints during the traversal of a trie allows
us to easily identify these situations: when a node is associated with
an unsatisfiable path constraint, all of its children will automatically
be marked as unsatisfiable, without having to query the SMT solver.
This optimization also works for path constraints added in future
concolic executions, since we cache SMT results in the trie nodes.

Greedy smallest-subtrie-first scheduling. The order in which chil-
dren are visited in the trie determines the order of solved constraints
and, therefore, the solving schedule. We rely on the simple heuristic
that in general, shorter paths are easier to solve. Therefore, we visit
sub-tries in ascending size order. Here, the size of a sub-trie is the
total number of elements, i.e., constraints.

While this scheduling solution is not important when all queries
generated by a concolic execution finish within the solving pe-
riod of 90 s mentioned in Section 4.1, it is important for programs
in which this is not the case. When the trie scheduler is under
pressure because it receives more path constraints than the SMT
solver can process, smallest-subtrie-first scheduling will guarantee
that fresh and fast path constraints will be prioritized. The trie
scheduler will process longer constraints, which are more likely to
timeout or prove unsatisfiable when it is no longer under pressure.
In the context of hybrid fuzzing, this approach reduces the risk
that the concolic engine produces test cases that have already been
superseded by test cases from the fuzzer.

Optimistic pruning. Optimistic pruning continually removes the
nodes in the trie using a “decay” mechanism to reduce memory
pressure. Upon insertion into the trie, the mechanism assigns a gen-
eration number to each constraint and increments the number with
each processed test case. When the solver follows a path in the trie,
the mechanism resets the generation number of all constraints on
that path. A configurable maximum generation number determines
when the mechanism removes older nodes from the trie. This decay
mechanism ensures that necessary nodes for solving survive across
executions while huge tries are pruned effectively.

If a node is scheduled for removal when the SMT solver has not
yet processed its path constraint, we do not simply erase it, but
instead schedule it for optimistic solving, which we describe below.
This gives Triereme another chance to solve the constraint, while
optimistic solving ensures a simple query to the SMT solver.

Dynamic timeouts. In concolic execution engines that use inline

solving, it is common to set a fixed timeout for each solver query.
While this limit can be manually adjusted, it is difficult to collect
statistics about the correct value for the program under test, as
the solver runs together with the target program. With our decou-
pled design, it is possible to easily collect statistics about common
solving times and adjust the timeout dynamically, similar to how
fuzzers such as AFL [33] or AFL++ [12] adjust their hang detection
timeout. After a warm-up period of 1000 concolic executions, we
set the timeout to twice the value of the 95th percentile. During
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development, we observed a reduction of the default timeout pe-
riod from the common default of 10 s to values between 1 s and
5 ms. Despite the large reduction of the threshold, the number of
timeouts rose at most to only 4.9% of all queries with our Trie con-
figuration, compared to the maximum of 1.2% obtained with our
Linear configuration (see Table 9). This dynamic limiting is very
useful in programs that generate many timeouts since even a small
number of timeouts is sufficient to put the concolic execution en-
gine under pressure. We also considered collecting statistics about
query times on a subset of our suite and then set a single optimized
timeout threshold for all benchmarks. However, we discarded this
solution as the optimal timeout thresholds vary too much across
benchmarks; a dynamic approach is thus preferable.

Optimistic solving. In addition to solving complete path con-
straints, we also implement optimistic solving [32]. In this case, we
try to solve only the last branch constraint for an unsatisfiable path
constraint. For example, if the path constraint 𝐴 ∧ ¬𝐵 is unsatisfi-
able, optimistic solving would try only with ¬𝐵. This simplification
is a way to get around some of the environment modeling limits
present in concolic execution. We use a separate solver instance
for optimistic solving to preserve the state of the assertion stack
generated by the exploration of the trie.

5 IMPLEMENTATION

Triereme. Our Triereme prototype is based on SymCC [24] as
we reuse its instrumentation code. Therefore, Triereme is compati-
ble with the same benchmarks as SymCC and it shares SymCC’s
limitations, such as incomplete symbolic expressions with inline as-
sembly. If SymCC receives compatibility improvements, Triereme
can be easily adapted to benefit from them.

Most of our implementation effort is in the runtime library and
the coordination component. Our runtime library is significantly
smaller than the original QSYM-based runtime library provided by
SymCC, since it only needs to record, serialize, and transmit the
symbolic expressions it encounters. We added most of the code to
the coordination component, which, in Triereme, performs most
of the tasks originally performed by the instrumented program.
This component shares some features with QSYM [32], but we
implemented it from scratch. We implemented Triereme mainly in
Rust, using around 6’000 lines of code.

Triereme always follows the pipeline illustrated in Section 4.1
to collect and assemble constraints. However, it can operate in two
different modes as far as the query scheduler is concerned: the
queries can be either processed using the trie scheduler described
in Section 4.2 or using a “linear” scheduler. The linear scheduler
replicates the behavior of a concolic execution engine that uses
inline solving, like QSYM. This linear solving mode allows us to sep-
arate the performance overhead introduced by decoupling tracing
and solving from the performance benefits derived from improved
scheduling. We name these two modes trie solver and linear solver.

Shared changes. Apart from implementing Triereme, we also in-
troduced modifications to the SymCC version we used as a baseline
in our evaluation to bring its performance on par with the state of
the art. These changes are replicated identically in Triereme.

First, we modified SymCC to work correctly with AFL++ [12],
instead of the original, and now reasonably outdated, AFL [33]. As a
consequence, we also reimplemented the filtering of candidate test
cases using LibAFL [13], removing the use of afl-showmap from
the coordinator component in SymCC. This change was necessary
due to performance issues in afl-showmap, which would have
significantly influenced the results of our experiments.

Second, we reduced the minimum synchronization interval in
AFL++ from the default 30 minutes to 5 minutes. The AFL++ authors
selected the default value to fit scenarios where tens of AFL++
instances share test cases. We found the new value more suited for
our evaluation since it makes the fuzzer more sensitive to progress
produced by the concolic engine. We observed an overall coverage
increase due to this change during development.

6 EVALUATION

We run our evaluation using FuzzBench [22], which provides a set
of predefined harnesses for real-world libraries. Since researchers
used these harnesses for thousands of hours, it is almost impossible
to find new bugs in a single campaign. From the 24 coverage bench-
marks available, we extracted 14 benchmarks that are marked as
supported by SymCC. We were forced to restrict the suite to what
is compatible with our baseline, but the number of benchmarks is
still in line with recommendations in the literature [5].

Our evaluation was run mostly on the cloud infrastructure pro-
vided by the FuzzBench project using n1-standard-1 VMs with
one vCPU core and 3.75 GB of RAM, which is FuzzBench’s default.
We evaluated libjpeg, mbedtls, and vorbis in a local FuzzBench
experiment due to the limited amount of RAM available in the
cloud VMs. The local machines have an AMD Ryzen Threadripper
2990WX and 128 GB of RAM. The local experiments also received
one core, pinned to each trial. All trials lasted 23 hours, similarly to
other works relying on the FuzzBench cloud infrastructure [5]; we
repeated cloud experiments 20 times and local ones 16 times, for
better core allocation. In both cases, we adhered to the best prac-
tices proposed by the literature [5, 18], which require a sufficient
number of runs to verify statistical significance (see Table 10).

In our first experiment, we used only one core per trial because
this setup is more representative of real-world campaigns that
strive towards full utilization of all available cores. In particular,
we used a hybrid fuzzing setup with a single AFL++ instance and
a single instance of the concolic engine which share that single
core. In this scenario, the fuzzer and the concolic engine compete
for resources, so a concolic engine that is more performant both
contributes more coverage progress and leaves more resources for
the fuzzer when the engine remains idle. As this setup is different
from the previous literature [24, 32], which dedicates a separate
core for each component of the hybrid fuzzer, we further explored
the implications of our setup in a second experiment.

We run AFL++ in fork mode with the common PCGUARD and
CMPLOG options; the latter is a reimplementation of the technique
proposed by RedQueen [1]. Although FuzzBench also supports
persistent mode, our SymCC baseline does not support it and, con-
sequently, neither does Triereme. Persistent mode would have
created a significant imbalance in the efficiency of the two com-
ponents of the hybrid system. As a result, the progress obtained
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by the fuzzer would have obscured improvements in the concolic
execution engine. In addition, fork mode is most commonly used
in the hybrid fuzzing literature [8, 24, 32].

As the purpose of Triereme is to solve roughly the same queries
as our baseline, but faster, we have decided not to investigate its
improvements in bug finding capabilities. Since we are not intro-
ducing new bug finding techniques, these improvements are the
result of our increased exploration speed, which can be measured
directly and more reliably with coverage [14, 18].

We run our experiments with four different configurations:

AFL++ This configuration includes only AFL++, i.e., just the
fuzzer without concolic execution engine.

Baseline This configuration is our baseline concolic engine.
It includes AFL++ and SymCC, run with its QSYM back-
end. To ensure a fair comparison, we applied performance
improvements unrelated to Triereme (see Section 5).

Linear This configuration is a reimplementation of QSYM
based on our codebase. It includes AFL++ and Triereme,
with its linear backend. This backend relies on Triereme’s
constraint processing pipeline (see Section 4.1), but sched-
ules constraints as an inline solver would do. Importantly,
this configuration does not use the trie data-structure.

Trie This configuration is our proposed method. It includes
AFL++ and Triereme, with our decoupled design and the trie
scheduler described in Section 4.2, with all optimizations.

We do not include solutions using incremental solving that do
not implement SymCC’s optimizations [10, 27], as we cannot tell if
the performance improvements we observe are due to our trie-based
solution or SymCC’s optimizations, which Triereme integrates.

In this evaluation, we answer the following three questions:

Q1 Does the solver trie significantly reduce the length and the
number of queries to the SMT solver due to incremental
solving and optimizations that operate across executions?

Q2 Does the solver trie reduce the amount of time spent run-
ning the SMT solver and, as a consequence, the amount of
time necessary to process a single test case, saving computa-
tional resources that can be used by the fuzzer?

Q3 Do our optimizations improve coverage progress compared
to SymCC with its QSYM backend?

Q4 To what extent will an alternative configuration, with a
dedicated core to both the fuzzer and the concolic engine,
impact CPU utilization (e.g., due to idling) and coverage?

6.1 Q1: Solver Queries

Triereme proposes various optimizations to reduce the time needed
to run the SMT solver. These optimizations enable the reuse of re-
sults from earlier concolic executions to prune useless solver queries.
To show their effectiveness, we collected the median number of
solver queries performed per concolic execution in Table 1.

Since the QSYM-backend used by SymCC does not collect sta-
tistics on the number of SMT queries performed, we compare the
data we collected for our Linear configuration to those collected for
our Trie configuration. Our Linear configuration adopts the same
optimizations as the Baseline configuration, making them roughly
equivalent in the number of SMT queries.

Queries per exec. (#)
Linear Trie Δ Queries

curl_curl_fuzzer_ht... 75(3) 72(4) −4.00%
freetype2_ftfuzzer 16(5) 9(1) −43.75%
harfbuzz_hb-shape-fuz... 4(0) 4(0) +0.00%
libjpeg-turbo_libjpeg...* 3(0) 9(4) +191.67%
libpng_libpng_read_... 126(3) 120(2) −4.76%
libxml2_xml 8(0) 8(0) +0.00%
mbedtls_fuzz_dtlscli...* 102(6) 181(10) +78.33%
openssl_x509 204(2) 161(1) −21.27%
openthread_ip6-send-f... 88(11) 66(3) −25.28%
proj4-2017-08-14 9(0) 9(0) +0.00%
re2-2014-12-09 3(0) 2(0) −33.33%
vorbis_decode_fuzzer* 150(4) 84(7) −43.48%
woff2-2016-05-06 109(6) 85(7) −21.79%
zlib_zlib_uncompress... 2(0) 1(0) −50.00%

Table 1: Number of SMT queries per execution. The table

shows median and median absolute deviation among trials.

Values in each trial are aggregated using their median. High-

lighted numbers are statistically significant (p-value < 0.05).

Thanks to the optimizations listed in Section 4.3, Triereme in
its Trie configuration reduces the number of queries performed
in 8 benchmarks in our test suite. The reduction is statistically
significant. Note that several benchmarks exhibit a minimal number
of queries even in our Linear configuration. This is likely to be a
symptom of operations that force SymCC, on which Triereme is
based, to concretize symbolic expressions, such as uninstrumented
library calls. In these cases, it is more difficult for Triereme to
reduce the number of queries, but it still succeeds with zlib and re2.
Finally, for two benchmarks, libjpeg and mbedtls, the number of
queries is higher for our Trie configuration, but in these cases, this
is a good thing. Analyzing the cases, we realized that the behavior
is due to our dynamic timeouts. Both benchmarks are very slow
and tend to time out often. The timeouts happen due to spending
much time in the SMT solver. The dynamic timeouts we added in
our Trie configuration allow Triereme to significantly reduce the
time spent in the SMT solver, stopping queries that are likely to
timeout early, thus allowing the concolic engine to perform more
queries in the same amount of time.

The other main technique we use to reduce the time spent in
the SMT solver is incremental solving. To use incremental solving
efficiently, we need path constraints that share a long common
prefix. If this were not the case, running incremental queries would
perform similarly to running them non-incrementally, as an inline
concolic execution engine would do. In order to prove that path
constraints indeed share a long common prefix, we have collected
statistics regarding path constraint lengths in Table 2.

Each time Triereme in the Trie configuration runs an SMT query,
we have recorded both the length of the complete path constraint
after filtering and its length relative to the last intermediate node,
thus excluding its common prefix. When using incremental solving,
the trie preserves the information about common prefixes, so only
the relative length will influence the time the solver runs, producing
a decrease of median query time of 50% in our tests (see Table 8).
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Full length Length no prefix Δ Length

curl_curl_fuzzer... 7(0) 1(0) −85.71%
freetype2_ftfuzze... 80(6) 1(0) −98.75%
harfbuzz_hb-shape... 267(32) 1(0) −99.63%
libjpeg-turbo_lib...* 431(74) 1(0) −99.77%
libpng_libpng_re... 11(1) 1(0) −90.91%
libxml2_xml 22(0) 1(0) −95.56%
mbedtls_fuzz_dtl...* 230(56) 1(0) −99.57%
openssl_x509 98(6) 1(0) −98.98%
openthread_ip6-se... 10(2) 1(0) −89.47%
proj4-2017-08-14 1(0) 1(0) +0.00%
re2-2014-12-09 37(3) 1(0) −97.30%
vorbis_decode_fu...* 45(4) 1(0) −97.79%
woff2-2016-05-06 550(69) 1(0) −99.82%
zlib_zlib_uncomp... 78(35) 1(0) −98.71%

Table 2: Length of a path constraint per target branch, in-

cluding or excluding its common prefix. The table shows

median and median absolute deviation among trials. Values

in each trial are aggregated using their median. Highlighted

numbers are statistically significant (p-value < 0.05).

As Table 2 shows, the exclusion of common prefixes leads to
an enormous reduction in the number of new branch constraints
the SMT solver needs to process. The median relative length is
always 1 for all benchmarks, meaning that it is very likely for a
path constraint to share every branch constraint apart from its
last one with at least one other path constraint. This proves that
using the trie data structure produces query schedules suitable for
exploiting incremental solving efficiently.

Given the results presented in this section, we can conclude
that the trie scheduler does indeed reduce both the length and the
complexity of the queries sent to the SMT solver.

6.2 Q2: Solving Time

The main goal of Triereme is to reduce the time spent running the
solver and, as a result, the overall time spent processing a single
test case. In Table 3, we show statistics about the time spent in each
phase of a concolic execution: apart from showing the total time
taken to process a test case, we also divide the execution between
time spent inside the SMT solver, generating new candidate test
cases, and outside, executing the pipeline described in Section 4.1.

When looking at the Baseline column, it is clear that executing
the SMT solver absorbs a significant portion of the execution, about
59% on average across our benchmarks. This means our objective
of reducing solver time to improve overall performance is justified.

Observing the time spent outside the solver for the various
fuzzers, we can see that Triereme spends a very similar amount of
time in this phase in both the Linear and the Trie configurations,
with the exception of libjpeg and openssl. The only difference in
this phase between the two configurations is the manipulation of
the trie. Given the similarity in time, we can conclude that the over-
head introduced by this operation is usually negligible. Looking now
at the time spent outside the solver for the Baseline configuration,
we can see how it is very often above the one for Triereme. Given
the overhead introduced by the serialization and deserialization

of symbolic expressions, we expected Triereme to be performing
worse than the Baseline configuration; instead, we conclude that
the overhead introduced is so small that it gets lost in the perfor-
mance difference introduced by the implementation differences
between Triereme and the QSYM backend used by SymCC. For
example, the Linear configuration relies on the deduplication steps
for expressions discussed in Section 4.1.

Considering the time spent in the solver, we can observe a mixed
behavior comparing Baseline to Linear. We believe this is, again,
due to the expression deduplication, which is likely to produce
an advantage on slow benchmarks, but may also introduce perfor-
mance regressions. The difference between the Trie configuration
and the other two is quite significant, with a reduction of up to
97% for re2. Apart from the use of incremental solving, which pro-
vides an advantage across the whole test suite, the benchmarks
that time out very often are likely to benefit significantly from our
dynamic timeouts. This benefit manifests for the four benchmarks
that, in the Baseline configuration, show a mean total execution
time above 45 seconds, which is likely obtained through frequent
timeouts at 90 seconds, the timeout value set by QSYM. In all of
them, the majority of the execution time is spent in the solver,
making the reduction of total time even more significant. The curl
benchmark exhibits the only regression: both Linear and Trie use
more solver time than Baseline. This benchmark is characterized
by fast concolic executions and a low amount of time spent in the
fuzzer; we attribute these characteristics to the short length of its
path constraints, which indicates simple solver queries. As a conse-
quence, caching layers end up adding more overhead than the gains
produced, doubling the time spent outside the solver. Incremental
solving, with such simple queries, is not able to compensate.

Finally, looking at the total execution times for the three config-
urations, it is clear how the novel design introduced by Triereme
is able to reduce the overall execution time, both compared to the
previous state of the art, our Baseline configuration, and to the
Linear configuration, with a peak speedup of 15.2x.

6.3 Q3: Coverage

In the previous sections we have shown that Triereme in its Trie
configuration is capable of processing test cases faster than the
Baseline. However, it is important to verify that this speed increase
did not come at the expense of coverage contribution, i.e., that
Triereme is faster simply because it eliminated operations that
were indeed useful for the hybrid fuzzing process.

Final coverage snapshot. In order to verify this, we report the
median number of covered edges at the end of our 23-hour ex-
periments in Table 4. Triereme produces statistically significantly
more coverage in 7 benchmarks out of the entire test suite, without
statistically significant regressions. Our sole regression in execu-
tion time, curl, here exhibits a statistically significant coverage
increase. This means that the slowdown may have also been caused
by additional, slower paths that have been explored and it was not
large enough to impact coverage progress. These results prove that
Triereme still performs all necessary operations to reach the same
coverage obtained by our Baseline configuration.

In addition, we find that, if a configuration covers a higher num-
ber of edges, it has covered a superset of the edges explored by
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Baseline Linear Trie
Total N.Solv. Solver Total N.Solv. Solver Total N.Solv. Solver Δ Solver Speedup

curl_cu... 0.35(2) s 0.25(1) s 98(4) ms 0.79(3) s 0.58(2) s 0.20(1) s 0.73(3) s 0.56(2) s 0.16(1) s +68% +0.5𝑥
freetype... 27(3) s 6.9(8) s 20(3) s 11(3) s 0.76(13) s 9.9(32) s 1.8(3) s 0.89(16) s 0.90(12) s −96% +14.9𝑥
harfbuzz... 6.5(8) s 5.3(5) s 3.7(4) s 1.9(3) s 0.94(24) s 0.91(14) s 1.7(2) s 1.3(1) s 0.44(3) s −88% +3.8𝑥
libjpeg-...* 24.7(1) s 5.1(2) s 22.2(2) s 23.7(1) s 0.37(3) s 23.4(1) s 18(1) s 5.9(8) s 12(1) s −46% +1.4𝑥
libpng_... 30(1) s 9.3(8) s 20(1) s 21(2) s 0.46(5) s 20(2) s 2.0(1) s 0.47(3) s 1.5(1) s −93% +15.2𝑥
libxml2... 7.3(2) s 4.1(1) s 5.0(4) s 0.96(5) s 0.51(3) s 0.43(5) s 1.0(1) s 0.53(3) s 0.47(11) s −91% +7.3𝑥
mbedtls...* 54(1) s 6.1(2) s 49(1) s 59(1) s 2.9(3) s 57(1) s 22(2) s 3.5(3) s 19(1) s −62% +2.5𝑥
openssl... 46.3(2) s 4.0(1) s 42.3(2) s 67.9(3) s 1.8(1) s 66.1(3) s 21(1) s 3.7(1) s 17.4(4) s −59% +2.2𝑥
openthre... 1.4(3) s 0.78(12) s 0.67(25) s 1.4(8) s 0.33(6) s 1.1(8) s 0.75(30) s 0.32(7) s 0.37(18) s −44% +1.9𝑥
proj4-20... 0.108(4) s 91(3) ms 14.5(3) ms 49(5) ms 35(4) ms 11(1) ms 51(2) ms 36(2) ms 13(1) ms −13% +2.1𝑥
re2-2014... 5.3(6) s 4.4(10) s 2.0(2) s 0.62(8) s 0.36(5) s 0.23(4) s 0.38(4) s 0.32(5) s 55(7) ms −97% +14.1𝑥
vorbis_...* 64.5(5) s 26(1) s 38(1) s 16(1) s 11(1) s 5.2(6) s 14(1) s 11(1) s 2.5(1) s −93% +4.7𝑥
woff2-20... 62(3) s 26(3) s 34(4) s 41(3) s 2.9(3) s 38(2) s 8.4(10) s 3.7(3) s 4.6(6) s −86% +7.4𝑥
zlib_zl... 1.2(2) s 0.93(9) s 0.43(12) s 0.37(3) s 0.10(1) s 0.26(4) s 0.15(2) s 97(7) ms 54(9) ms −87% +7.5𝑥

Table 3: Total, non-solver and solver time per concolic execution. The table shows median and median absolute deviation

among trials. Values in each trial are aggregated using their mean. Variation and speedup are calculated between our Trie and

our Baseline configuration, highlighted numbers are stat. significant (p-value < 0.05). The speedup refers to the total time.

Edges covered (#)
AFL++ Baseline Linear Trie

curl_cur... 10 150(49) 10 205(52) 10 240(33) 10 285(48)
freetype2... 9435(172) 9982(341) 10 058(364) 10 761(283)
harfbuzz... 4782(32) 4813(65) 4834(61) 4807(48)
libjpeg-t...* 3073(3) 3025(8) 2962(32) 3020(14)
libpng_l... 1968(6) 1983(13) 1981(5) 1998(6)
libxml2_... 15 334(73) 15 378(46) 15 599(44) 15 544(50)
mbedtls_...* 2731(18) 2726(16) 2737(20) 3239(319)
openssl_... 5820(4) 5822(4) 5815(4) 5825(3)
openthrea... 2694(180) 2888(281) 2960(317) 2914(298)
proj4-201... 3374(94) 3366(73) 3280(126) 3358(136)
re2-2014-... 2486(5) 2484(4) 2486(3) 2485(4)
vorbis_d...* 1264(2) 1246(5) 1260(2) 1259(2)
woff2-201... 1160(8) 1134(13) 1139(8) 1146(8)
zlib_zli... 457(1) 456(2) 457(3) 456(1)

Table 4: Edges covered at the end of our 23 hours experi-

ments. The table shows median and median absolute devia-

tion among trials. Values in each trial are aggregated using

their median. Highlighted numbers are statistically signifi-

cantly better than Baseline (p-value < 0.05).

the others, with very few exceptions. This is due to the fact that
Triereme only increases the speed of the exploration, but does not
modify SMT queries. This proves that our statistics are collected
on equivalent test cases.

Coverage progress. To further explore the performance improve-
ment introduced by Triereme, we present a selection of coverage
over time plots in Figure 4; the complete set of plots is in Figure 8.
During a fuzzing campaign, coverage over time progresses with a
logarithmic-like plot, as is evident in this figure. This means that
most edges are covered at the beginning of the run, and that cover-
age eventually reaches a plateau. At this point, the fuzzer makes no
meaningful progress on coverage because either the reachable code

has been fully explored or the tools used in the fuzzing campaign
are extremely unlikely to produce test cases that can progress in
the exploration. The plateau can be reached either very quickly,
as it is the case for re2, or not even in 23 hours, as for freetype2.
When increasing the processing speed of a concolic execution en-
gine, but not its ability to explore additional code, as is the case
for Triereme, one can expect to observe faster coverage progress
even if it converges on the same plateau. This means that, in cases
such as harfbuzz, the processing speed increase still shows in the
first 8 hours of the process, where the Trie plot is clearly above the
Baseline and the Linear ones, even if it is not evident in the final
coverage snapshot provided in Table 4.

To aid the visualization of the statistical significance of the differ-
ence between the Baseline and the Trie configurations throughout
the 23-hour experiments, we show the results of a series Mann-
Whitney U-tests, taken at intervals of 30 minutes, in Figure 5. These
plots show that only 3 benchmarks, out of the entire test suite, do
not exhibit a statistically significant coverage improvement during
the 23-hour experiments. When the intervals of statistical signifi-
cance end before the 23 hours mark, the various configurations are
converging toward a single coverage plateau.

Given the final coverage and the statistical significance of the
coverage increases throughout the experiments, we conclude that
Triereme in its Trie configuration has a positive effect on the overall
coverage progress of its hybrid fuzzer.

Fuzzing comparison. Finally, we included the AFL++ configu-
ration, which runs just the fuzzer, in Figure 4. Importantly, this
configuration progresses faster than the others in 6 benchmarks,
e.g. in harfbuzz. We expected such behavior because the fuzzer,
alone, is able to saturate the portions of code that are easily ex-
plorable because it can produce test cases faster. At the beginning
of the run, the concolic execution engine effectively takes away
resources from the fuzzer, which, at that point, is operating more
efficiently. Even in this case, though, the Trie configuration is able
to surpass the Baseline by taking away fewer resources due to its
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Figure 4: A selection of the coverage plots obtained from our FuzzBench evaluation. The line plots show the median value

among trials with a 95% confidence interval.
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Figure 5: Mann-Whitney U-tests taken at intervals of 30 min-

utes between our Baseline and our Trie configuration. The

passed value indicates that the p-value < 0.05 and that Trie

has discovered more branches than Baseline.

improved efficiency. Concolic engines are more likely to be useful
later in the run, when the fuzzer starts getting stuck on difficult
conditions, allowing them to catch it and surpass it. This behavior
is visible in freetype2. Overall, Triereme performs statistically
significantly better than AFL++ in 50% of the benchmarks after 23
hours, while it performs statistically significantly worse in 21% of
them. This indicates that, while Triereme makes a substantial step
in improving the efficiency of concolic engines, some benchmarks
are intrinsically less amenable for improvements through concolic
execution. Looking at woff2, for example, the concolic execution
engine appears to be simply stealing resources from the fuzzer.
Given these results and the additional resource usage that comes

with concolic execution, we believe that Triereme reduces the num-
ber of benchmarks in which concolic execution hurts performance,
but it is still not sufficient for every target.

6.4 Q4: Dedicated Cores

When solving a specific path constraint, a concolic engine will
determine its solution space and then extract a satisfying test case.
While it may be possible to extract multiple test cases from the
solution space, the fuzzer can typically mutate the test case more
efficiently. For this reason, SymCC queries the solver only once,
extracting a single solution, and leaves further mutation to the
fuzzer. This entails that the concolic engine remains operational
only as long as the fuzzer discovers new test cases. When the fuzzer
is close to its coverage plateau, the concolic engine will finish
processing the test cases produced at the beginning of the run and
then idle waiting for new test cases, rarely resuming its execution.

Our single core experiments confirm this across our test suite.
After a period of activity, the concolic engine process sleeps for most
of the remaining time. Table 5 shows that our Trie configuration
is able to idle statistically significantly longer than our Baseline
configuration in 79% of the benchmarks, freeing up computational
resources that can be used by the fuzzer, as they share a single core.

Previous work [24, 32] used a different evaluation setup, ded-
icating a separate core to each component of the hybrid fuzzer.
We believe that this setup is not suitable for evaluations where the
concolic engine frequently idles for a long time. When this happens,
the core assigned to it remains unused; as a result, a faster engine
will waste more cycles because it will idle earlier, while a slower
engine will exploit the core better and thus reduce its overhead.

Nevertheless, we have collected coverage data with dedicated
cores to allow comparison with previous work on an equal footing.
We conducted such trials on our local machines, as they are not
suitable for the standard cloud configuration. We omitted bench-
marks with idle time >95% for all configurations, as they essentially
use only one core and would thus produce the same results. Table 6
shows that, despite the difference in speed, Trie obtains statistically
significant gains in only 30% of benchmarks at the end of the ex-
periment; in terms of coverage progression, Trie performs better in
60% of benchmarks, but for a considerably shorter time compared
to our default configuration (see Figures 6 and 7). These findings
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Idle time Δ %
Baseline Linear Trie

curl_curl_... 96.24(0)% 96.46(0)% 96.66(0)% +0.21%
freetype2_f... 0.12(0)% 0.04(0)% 63.48(4)% +63.43%
harfbuzz_hb... 36.75(7)% 79.58(4)% 82.69(2)% +3.11%
libjpeg-turb...* 0.17(0)% 0.16(0)% 0.21(0)% +0.05%
libpng_libp... 32.05(2)% 50.17(5)% 95.09(0)% +44.92%
libxml2_xml 0.18(0)% 80.61(1)% 79.98(3)% −0.64%
mbedtls_fuz...* 44.52(2)% 40.22(2)% 75.05(2)% +34.83%
openssl_x50... 0.29(0)% 1.88(0)% 48.78(1)% +46.90%
openthread_... 98.17(1)% 98.26(1)% 99.22(0)% +0.96%
proj4-2017-0... 96.94(0)% 99.85(0)% 99.84(0)% −0.01%
re2-2014-12-... 81.21(2)% 97.77(0)% 98.66(0)% +0.88%
vorbis_deco...* 0.18(0)% 67.26(2)% 72.24(2)% +4.98%
woff2-2016-0... 4.41(4)% 29.06(4)% 84.57(2)% +55.51%
zlib_zlib_... 99.17(0)% 99.80(0)% 99.91(0)% +0.11%

Table 5: Percentage of time each concolic engine spends

idling. The table shows median and median absolute devia-

tion among trials. Values in each trial are aggregated using

their median. Highlighted numbers are statistically signifi-

cant (p-value < 0.05).

Edges covered (#)
Baseline (2 cores) Linear (2 cores) Trie (2 cores)

freetype2...* 11 260(271) 11 197(170) 11 268(430)
harfbuzz_...* 10 828(39) 10 867(24) 10 868(24)
libjpeg-tu...* 3074(1) 3073(2) 3074(1)
libpng_li...* 2004(2) 2004(6) 2002(6)
libxml2_x...* 15 604(33) 15 616(20) 15 608(34)
mbedtls_f...* 2760(41) 2755(20) 3584(167)
openssl_x...* 5830(4) 5826(8) 5832(2)
re2-2014-1...* 2870(2) 2867(4) 2872(3)
vorbis_de...* 1260(2) 1262(2) 1262(2)
woff2-2016...* 1152(9) 1152(10) 1140(9)

Table 6: Edges covered at the end of our 23 hours experiments

with dedicated cores. The table shows median and median

absolute deviation among trials. Values in each trial are ag-

gregated using their median. Highlighted numbers are stat.

significantly better than Baseline (p-value < 0.05).

show that dedicating a core per component hides the overhead of
slower concolic engines; we thus advise using one core per fuzzer.

7 RELATEDWORK

Fuzzing has been recently gaining momentum in the community [3,
14, 20, 30] and since Driller [27] first proposed to combine tradi-
tional fuzzing with concolic execution, a rich literature on hybrid
fuzzing has emerged. We will discuss the most relevant works and
then focus on the relatively fewer works that specifically aim to
speed up constraint solving using constraint caching.

Hybrid fuzzing. Driller [27], DigFuzz [34], and Hybrid Concolic
Testing [21] selectively apply concolic execution when it is most
effective in increasing the efficiency of the overall hybrid fuzzing
process. In contrast, our work focuses on reducing solving time

regardless of where and when concolic execution is used. These
techniques are orthogonal to our approach, and could be combined
with our work to achieve even better fuzzing performance.

The most recent works focusing on the performance of concolic
execution engines in the context of hybrid fuzzing are QSYM [32],
SymCC [24], SymQEMU [25], and SymSan [8]. Among these, only
QSYM focused on reducing solving time, while the others focus
on the management of symbolic expressions. Our work reduces
solving time building upon the techniques introduced by QSYM,
but remodelling the solving pipeline to enable optimizations, such
as incremental solving, that would be impossible otherwise.

JigSaw [9], JFS [19], and Fuzzolic [6] are recent attempts to
side-step full-blown SMT solving by combining various fuzzing
techniques to approximate solutions to SMT problems. While our
work also makes constraint solving more efficient, it delivers exact
solutions and does not use approximations.

KLEE [7] implements constraint filtering and complex caching
among other techniques. Our work explores these techniques in
the context of hybrid fuzzing, where KLEE’s more sophisticated
techniques would be too expensive. We show that even simple
techniques are effective without introducing too much overhead.

Trie in constraint solving. Outside of hybrid fuzzing, several other
works have used a trie data structure to speed up constraint solving.
Memoise [31] uses a trie structure to cache a tree of symbolic execu-
tion states. Our prototype uses the trie to schedule the solver more
efficiently. Green [29] applies constraint filtering on top of other
transformations for improved caching efficiency. GreenTrie [17]
extends Green by considering the implication relation between
(sub-)constraints and stores it using an L-Trie, a trie-like data struc-
ture. In contrast, we use the trie structure to store a successor
relation between constraints along the execution path. Our use of
the trie is sufficiently lightweight to be used in hybrid fuzzing.

Taljaard et al. [28] re-evaluate constraint caching techniques in
concolic execution. The authors conclude that the key to caching
performance is constraint simplification and that “Z3’s incremental
mode often outperforms caching”. Crucially, Triereme’s decoupled
design allows us to apply all three techniques together.

Other works [16, 26] decouple tracing and solving, but Triereme
is the first to use the decoupling for optimization in hybrid fuzzing.

8 CONCLUSION

In this paper, we described a new approach to speed up concolic
execution in hybrid fuzzers, by (a) decoupling concolic tracing from
concolic solving, and (b) scheduling an optimized set of queries to
the SMT solver by organizing them in a trie. The trie allows us to
reorder and prune queries while allowing the use of incremental
solving. As result, we reduce the time spent solving and, conse-
quently, the overall overhead of the concolic engine. Our evaluation
proved that our optimizations can lead to statistically significant in-
creases in coverage compared to a state-of-the-art hybrid fuzzer as
well as reduce inefficiency when considering a non-hybrid fuzzer.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their feedback and the
FuzzBench project. This work was supported by EZK through the
AVR “Memo” project and by NWO through project “INTERSECT”.



Conference’17, July 2017, Washington, DC, USA Elia Geretto, Julius Hohnerlein, Cristiano Giuffrida, Herbert Bos, Erik van der Kouwe, and Klaus v. Gleissenthall

REFERENCES

[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Proceedings of the 2019 Network and Distributed System Security Symposium

(NDSS), Vol. 19. 1–15.
[2] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley.

2014. Enhancing Symbolic Execution with Veritesting. In Proceedings of the

36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 1083–1094.
https://doi.org/10.1145/2568225.2568293

[3] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury. 2022.
Stateful Greybox Fuzzing. In 31st USENIX Security Symposium (USENIX Security

22). USENIX Association, Boston, MA, 3255–3272. https://www.usenix.org/
conference/usenixsecurity22/presentation/ba

[4] Ferenc Bodon and Lajos Rónyai. 2003. Trie: an alternative data structure for
data mining algorithms. Mathematical and Computer Modelling 38, 7-9 (2003),
739–751. Publisher: Elsevier.

[5] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the Reliabil-
ity of Coverage-Based Fuzzer Benchmarking. In Proceedings of the 44th Inter-

national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1621–1633.
https://doi.org/10.1145/3510003.3510230

[6] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. 2021. Fuzzing Sym-
bolic Expressions. In Proceedings of the 43rd International Conference on Software

Engineering (ICSE ’21). https://doi.org/10.1109/ICSE43902.2021.00071
[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08). 209–224.
[8] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng, Chengyu Song, Byoungy-

oung Lee, Heng Yin, and Insik Shin. 2022. {SYMSAN}: Time and Space Efficient
Concolic Execution via Dynamic Data-flow Analysis. In 31st USENIX Security

Symposium (USENIX Security 22). 2531–2548.
[9] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. 2022. JIGSAW: Efficient

and Scalable Path Constraints Fuzzing. In 2022 IEEE Symposium on Security and

Privacy (SP’22). 18–35.
[10] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A

platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices

46, 3 (2011), 265–278.
[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

Tools and Algorithms for the Construction and Analysis of Systems: 14th Interna-

tional Conference, TACAS 2008, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April

6, 2008. Proceedings 14. Springer, 337–340.
[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :

Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on

Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[13] Andrea Fioraldi, Dominik Maier, Dongjia Zhang, and Davide Balzarotti. 2022.
LibAFL: A Framework to Build Modular and Reusable Fuzzers. In Proceedings of

the 29th ACM conference on Computer and communications security (CCS) (Los
Angeles, U.S.A.) (CCS ’22). ACM.

[14] Elia Geretto, Cristiano Giuffrida, Herbert Bos, and Erik Van Der Kouwe. 2022.
Snappy: Efficient Fuzzing with Adaptive and Mutable Snapshots. In Proceedings

of the 38th Annual Computer Security Applications Conference (Austin, TX, USA)
(ACSAC ’22). Association for Computing Machinery, New York, NY, USA, 375–387.
https://doi.org/10.1145/3564625.3564639

[15] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation. 213–223.
[16] Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox

fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44. Publisher: ACM
New York, NY, USA.

[17] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing reuse of constraint
solutions to improve symbolic execution. In Proceedings of the 2015 International

Symposium on Software Testing and Analysis. 177–187.
[18] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123–2138. https://doi.org/10.
1145/3243734.3243804

[19] Daniel Liew, Cristian Cadar, Alastair F. Donaldson, and J. Ryan Stinnett. 2019. Just
Fuzz It: Solving Floating-Point Constraints Using Coverage-Guided Fuzzing. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

’19). Association for Computing Machinery.

[20] Stephan Lipp, Daniel Elsner, Thomas Hutzelmann, Sebastian Banescu, Alexander
Pretschner, and Marcel Böhme. 2022. FuzzTastic: A Fine-Grained, Fuzzer-Agnostic
Coverage Analyzer. In Proceedings of the ACM/IEEE 44th International Conference

on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 75–79. https:
//doi.org/10.1145/3510454.3516847

[21] Rupak Majumdar and Koushik Sen. 2007. Hybrid concolic testing. In 29th Inter-

national Conference on Software Engineering (ICSE’07). IEEE, 416–426.
[22] Jonathan Metzman, László Szekeres, Laurent Maurice Romain Simon, Read Trev-

elin Sprabery, and Abhishek Arya. 2021. FuzzBench: An Open Fuzzer Bench-
marking Platform and Service. In Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 1393–1403. https://doi.org/10.1145/3468264.3473932

[23] Xianya Mi, Sanjay Rawat, Cristiano Giuffrida, and Herbert Bos. 2021. LeanSym:
Efficient Hybrid Fuzzing Through Conservative Constraint Debloating. In 24th

International Symposium on Research in Attacks, Intrusions and Defenses (San
Sebastian, Spain) (RAID ’21). Association for Computing Machinery, New York,
NY, USA, 62–77. https://doi.org/10.1145/3471621.3471852

[24] Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In 29th USENIX Security Symposium (USENIX

Security 20). USENIX Association, 181–198. https://www.usenix.org/conference/
usenixsecurity20/presentation/poeplau

[25] Sebastian Poeplau and Aurélien Francillon. 2021. SymQEMU: Compilation-based
symbolic execution for binaries. In Proceedings of the 2021 Network and Distributed

System Security Symposium (NDSS).
[26] Emil Rakadjiev, Taku Shimosawa, Hiroshi Mine, and Satoshi Oshima. 2015.

Parallel SMT Solving and Concurrent Symbolic Execution. In 2015 IEEE Trust-

com/BigDataSE/ISPA, Vol. 3. 17–26. https://doi.org/10.1109/Trustcom.2015.608
[27] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution. In
Proceedings of the 2016 Network and Distributed System Security Symposium

(NDSS), Vol. 16. 1–16.
[28] Jan Taljaard, Jaco Geldenhuys, and Willem Visser. 2020. Constraint Caching

Revisited. In NASA Formal Methods, Ritchie Lee, Susmit Jha, Anastasia Mavridou,
and Dimitra Giannakopoulou (Eds.). 251–266.

[29] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: reducing,
reusing and recycling constraints in program analysis. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering

(FSE ’12). Association for Computing Machinery.
[30] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming

Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In Pro-

ceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY,
USA, 1634–1645. https://doi.org/10.1145/3510003.3510174

[31] Guowei Yang, Corina S Păsăreanu, and Sarfraz Khurshid. 2012. Memoized sym-
bolic execution. In Proceedings of the 2012 International Symposium on Software

Testing and Analysis. 144–154.
[32] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A

Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX

Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD,
745–761. https://www.usenix.org/conference/usenixsecurity18/presentation/
yun

[33] Michał Zalewski. 2013. American fuzzy lop.
[34] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. 2019. Send hardest problems

my way: Probabilistic path prioritization for hybrid fuzzing.. In NDSS.

A APPENDIX

Memory Usage. Table 7 shows the highest memory usage we
have observed, per benchmark, in any of our trials. The memory
usage reported by our Rust components are fairly similar across
our Linear and our Trie configuration. This is because both use the
same constraint processing pipeline and caching policies, leading
to the same peaks in memory usage. The trie data structure in our
scheduler is not, in itself, very large as it contains only references
to larger objects in the caches. Since these references keep more
cached objects alive, though, we expect a higher average memory
usage in our Trie configuration. We can observe that there are
three benchmarks that show an increased overall memory con-
sumption (> 4 GB): libjpeg, mbedtls, and vorbis. Even in these
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Rust mem. usage (MB) Z3 mem. usage (MB)
Linear Trie Linear Trie

curl_curl_f... 193.5 196.5 25.1 54.6
freetype2_ft... 736.7 1071.3 830.5 1624.0
harfbuzz_hb-... 357.4 330.9 421.3 933.1
libjpeg-turbo...* 438.6 279.7 1059.1 8621.6
libpng_libpn... 64.7 70.5 44.5 152.3
libxml2_xml 1149.8 1018.3 291.5 1012.0
mbedtls_fuzz...* 3829.0 4334.3 58.0 516.2
openssl_x509 159.1 401.6 161.2 2416.5
openthread_i... 52.5 52.1 46.9 147.9
proj4-2017-08... 188.2 214.9 0.4 3.0
re2-2014-12-0... 71.9 72.5 29.1 49.4
vorbis_decod...* 295.6 277.7 265.5 8378.9
woff2-2016-05... 246.6 263.1 85.5 304.5
zlib_zlib_u... 41.3 44.8 100.2 351.5

Table 7: Maximummemory usage per benchmark obtained

in any of the trials in our evaluation. The data was collected

sampling memory usage every 3 seconds.

SMT query time Δ Query time
Linear Trie

curl_curl_fuzzer_... 1.6(2) ms 1.2(4) ms −29.13%
freetype2_ftfuzzer 1.9(3) ms 0.79(7) ms −58.07%
harfbuzz_hb-shape-f... 2.5(1) ms 1.04(3) ms −57.70%
libjpeg-turbo_libjp...* 3.7(6) ms 0.78(4) ms −78.89%
libpng_libpng_read... 1.3(1) ms 0.64(3) ms −48.89%
libxml2_xml 1.2(1) ms 0.82(2) ms −32.21%
mbedtls_fuzz_dtlsc...* 2.4(3) ms 1.04(4) ms −56.16%
openssl_x509 2.2(1) ms 1.17(2) ms −46.38%
openthread_ip6-send... 1.1(1) ms 0.78(10) ms −30.29%
proj4-2017-08-14 0.84(9) ms 0.69(2) ms −18.64%
re2-2014-12-09 1.2(2) ms 0.68(9) ms −41.97%
vorbis_decode_fuzz...* 1.3(1) ms 0.85(8) ms −32.45%
woff2-2016-05-06 7.8(8) ms 1.1(2) ms −86.44%
zlib_zlib_uncompre... 3.0(15) ms 0.69(7) ms −77.36%

Table 8: Time taken to performa single SMT solver query. The

table shows median and median absolute deviation among

trials. Values in each trial are aggregated using their median.

Highlighted numbers are statistically significant (p-value <

0.05).

cases, though, the memory consumption peaks at 8.7 GB, proving
that Triereme uses RAM in a practical, although occasionally in-
tensive, way. We believe that adopting more aggressive pruning
policies would bring down the usage even more, but we have not
explored this possibility in the current experiments.

Query time. Table 8 shows the time taken to perform a solver
query across the benchmarks we selected. The use of incremental
solving in our Trie configuration is able to substantially reduce
the time taken to get a solution for a query. We obtain the high-
est improvements with the benchmarks that produce the slowest
queries, e.g. woff2 and libjpeg. These benchmarks also produce
the longest path constraints according to Table 2. For this reason,

Queries timed out
Linear Trie Δ %

curl_curl_fuzzer_ht... 0.00(0)% 0.00(0)% +0.00%
freetype2_ftfuzzer 1.08(0)% 3.19(0)% +2.11%
harfbuzz_hb-shape-fuz... 0.04(0)% 2.33(0)% +2.29%
libjpeg-turbo_libjpeg...* 11.54(2)% 4.87(1)% −6.67%
libpng_libpng_read_... 0.98(0)% 1.89(0)% +0.91%
libxml2_xml 0.00(0)% 1.47(0)% +1.47%
mbedtls_fuzz_dtlscli...* 2.18(1)% 0.00(0)% −2.18%
openssl_x509 0.25(0)% 2.80(0)% +2.55%
openthread_ip6-send-f... 0.00(0)% 0.19(0)% +0.19%
proj4-2017-08-14 0.00(0)% 0.00(0)% +0.00%
re2-2014-12-09 0.00(0)% 1.47(1)% +1.47%
vorbis_decode_fuzzer* 0.00(0)% 0.60(0)% +0.60%
woff2-2016-05-06 0.21(0)% 2.78(0)% +2.57%
zlib_zlib_uncompress... 0.00(0)% 0.00(0)% +0.00%

Table 9: Percentage of queries that reached the timeout

threshold. The table showsmedian andmedian absolute devi-

ation among trials. Values in each trial are aggregated using

their median. Highlighted numbers are statistically signifi-

cant (p-value < 0.05).

0 8 16 24
Time (hours)

freetype2_f…*
harfbuzz_hb…*
libjpeg-tur…*
libpng_libp…*
libxml2_xml*

mbedtls_fuz…*
openssl_x50…*
re2-2014-12…*
vorbis_deco…*
woff2-2016-…*

not passed passed

Figure 6: Mann-Whitney U-tests taken at intervals of 30 min-

utes between our Baseline and our Trie configuration using

dedicated cores. The passed value indicates that p-value < 0.05

and that Trie has discovered more branches than Baseline.

we can attribute the solving time reduction to incremental solving.
Overall, we obtain a mean reduction of 50% in the benchmarks we
used for our evaluation.
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Query num. Path len. Solver time Total time Coverage Idle time Cov. (2 cores) Timeouts Query time

curl_curl_fuzzer_ht... 1.17e-01 1.14e-07 1.54e-06 1.54e-06 2.26e-02 1.85e-02 1.00e+00 3.02e-02
freetype2_ftfuzzer 6.12e-05 7.89e-09 6.80e-08 6.80e-08 3.29e-05 6.80e-08 6.92e-01 6.80e-08 6.80e-08
harfbuzz_hb-shape-fuz... 6.68e-01 8.01e-09 6.80e-08 6.80e-08 9.57e-01 1.44e-02 4.57e-02 5.37e-08 6.79e-08
libjpeg-turbo_libjpeg... 3.47e-05 2.81e-07 2.64e-05 2.64e-05 5.34e-01 4.62e-01 6.56e-01 1.54e-06 1.54e-06
libpng_libpng_read_... 3.84e-05 6.73e-09 6.80e-08 6.80e-08 1.32e-03 6.80e-08 9.10e-01 2.56e-07 6.79e-08
libxml2_xml 1.51e-03 5.64e-09 6.80e-08 6.80e-08 6.90e-07 2.50e-01 4.29e-01 4.95e-08 4.53e-07
mbedtls_fuzz_dtlscli... 1.53e-06 2.80e-07 1.54e-06 1.54e-06 1.54e-06 1.54e-06 1.54e-06 1.18e-06 1.54e-06
openssl_x509 6.38e-08 7.96e-09 6.80e-08 6.80e-08 6.70e-02 6.80e-08 4.22e-02 6.78e-08 6.78e-08
openthread_ip6-send-f... 6.82e-05 7.59e-09 3.37e-02 2.80e-03 5.52e-01 3.37e-02 6.68e-05 7.57e-04
proj4-2017-08-14 1.00e+00 1.00e+00 1.48e-01 3.94e-07 8.18e-01 4.73e-01 1.00e+00 1.01e-03
re2-2014-12-09 6.99e-04 7.90e-09 6.80e-08 6.80e-08 5.97e-01 1.60e-05 6.62e-01 7.99e-09 2.04e-05
vorbis_decode_fuzzer 1.53e-06 2.77e-07 1.54e-06 1.54e-06 1.56e-06 1.52e-04 1.85e-01 3.92e-07 1.86e-06
woff2-2016-05-06 1.41e-07 7.99e-09 6.80e-08 6.80e-08 5.31e-03 6.80e-08 7.01e-02 6.61e-08 6.80e-08
zlib_zlib_uncompress... 1.51e-03 8.01e-09 6.80e-08 6.80e-08 9.67e-01 6.80e-08 4.51e-03 1.66e-07

Table 10: This table contains the p-values generated by all the Mann-Whitney U tests performed for the other tables in the

paper. Values in the other tables are highlighted when the corresponding p-value is lower than 0.05.
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Figure 7: Coverage plots obtained from our FuzzBench evaluation using dedicated cores. The line plots show the median value

among trials with a 95% confidence interval.
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Figure 8: Coverage plots obtained from our FuzzBench evaluation. The line plots show the median value among trials with a

95% confidence interval.
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