Research Statement
John Sarracino

I am a programming languages and formal methods researcher. My agenda is to build high-assurance
certified systems and to make certified programming available to mainstream software developers.
Correctness is an overarching concern in software system development and it is increasingly important as software
security becomes more critical. A powerful technique for building high-assurance systems is software development
using a proof assistant. In this style of certified programming, a proof engineer implements their program in
the assistant, writes a formal specification for the program within the assistant, and then interactively uses the
assistant to prove that the program satisfies the specification. Certified programming provides a high level of
assurance; program correctness depends only on the implementation of the proof assistant. But, the programmer
must become sufficiently versed in the proof assistant and proofs require a significant amount of manual effort.

My current research is on developing proof automation for drastically reducing manual effort for common proofs.
While proof assistants are not a realistic tool for software development today, in an increasingly security-critical
world, formal machine-checked specifications must become as commonplace as linters, unit tests, and code doc-
umentation. My research vision is to make certified software development as seamless and easy as
current assurance techniques, such that developers can add and prove formal specifications as sim-
ply as they can add and check unit tests. I approach this challenge with a human-computer interaction
and programming languages background. I will first describe how my thesis work in human-computer interaction
and program synthesis motivated my current research on formal methods and proof automation, and then I will
conclude with some directions for future research.

Thesis work: synthesis for end-users. I developed several techniques for enabling end-users to create software
without writing code. Along the way I gained an appreciation for the power of applied programming language
techniques and the fundamental usability challenges of state-of-the-art techniques.

My first foray into applied programming languages was a technique for authoring interactive physical diagrams
[]. Prior to this work, interactive physical diagrams were in broad use by educators, but they required
significant programming expertise to develop. This led to a mismatch between end-users of the tool, who desired
material that they could adapt and customize to their curriculum, and the diagrams, which were inaccessible as
many educators do not program. The key insight of the work is to represent the interactivity of these diagrams as
a system of linear constraints. Using this representation, I developed an algorithm for searching over the space of
constraint configurations, which is significantly smaller than the space of all possible diagrams. To make the search
algorithm useable by educators, I developed a technique for visualizing the search; each candidate configuration
is simulated and previewed, and the end-user simply needs to pick the desired configuration from a series of self-
animating previews. I am particularly proud of this work. We evaluated the tool in the wild with a group of
high-school and college educators. Most end-users could use the tool to quickly and easily develop diagrams.

For interactive diagrams, I traded off expressiveness of the technique for automation. While this technique is
fully automated, there are many interaction modalities that it cannot express. This motivated me to explore
program synthesis, which searches for much more expressive and complex programs (at the cost of intractability).
I developed a technique for automatically generating dynamic web layouts from input-output examples of their
behavior |]. This work targets layout designers, who generally are skilled at building layout mockups, but
for whom implementing the dynamic scaling logic for resizing to different screen layouts is difficult. The main
contributions of our technique were to adapt SMT solvers to noisy input-output examples using Bayesian inference,
and to scale layout inference up to realistic webpages through a novel divide-and-conquer algorithm, resulting in
the ability to synthesize layouts with roughly 30X the size of previous work.

Postdoctoral work: formal methods and proof automation. My interest in formal methods developed
after using state-of-the-art SMT solvers in the algorithm for webpage layout. I did an internship at Galois on
formal methods for reasoning about parsers, which eventually lead to my first experiences with interactive theorem
provers in which I developed a Coq mechanization of data-dependent parsers |]. The key idea is to
generalize regular languages to include a monadic bind operator, which can express many common patterns in
real-world parsers. This work was relatively theoretical and to broaden the impact of the work, I next collaborated
with networking experts on reasoning about networking protocol parsers.

Networking parsing is performance critical and parser developers use very low-level abstractions that are close
to the hardware model (such as P4 or eBPF). A common idiom is to take a simple parser for a format and
adapt it to the hardware constraints of a switch, significantly transforming the structure of the parser to fully
exploit switch-specific architectures. These transformations are done manually by programmers and automatically
during parser compilation, and transformation correctness is crucial as parser errors are ripe sources of security

(ont)
<>
<R

Back-translation

‘ parser-gen

Match: ([ff, 00, 00, ff, ff, 00, 00, 00, 001, [00, 00, 00, 03, 00, 00, 00, 00, 00]) Next-State: 3/255 Adv: 14 Next-Lookup: [0, 0, 0, 0]
Match: ([ff, 00, 00, ff, ff, 00, 00, 00, 001, [00, 00, 00, 88, 47, 00, 00, 00, 00]) Next-State: 4/255 Adv: 16 Next-Lookup: [0, 2, 4, 6]
Match: ([ff, 01, 00, 00, 00, 01, 00, f0, 00], [04, 00, 00, 00, 00, 01, 00, 00, 00]) Next-State: 1/255 Adv: 6 Next-Lookup: [0, 0, 0, 0]
Match: ([ff, 01, 00, f0, 00, 00, 00, 00, 00], [04, 01, 00, 00, 00, 00, 00, 00, 00]) Next-State: 1/255 Adv: 2 Next-Lookup: [0, 0, 0, 0]

Match: ([ff, 00, 00, 00, 00, 00, 00, 00, 00], [04, 00, 00, 00, 00, 00, 00, 0@, @0]) Next-State: 255/255 Adv:

~N

Next-Lookup: [0, 0, 0, @]

Figure 1: Translation validation case-study, in which we used a parser equivalence analysis (Leapfrog) to certify
that an optimizing compiler (parser-gen) correctly generated the parser for a networking protocol.

vulnerabilities. I developed a parser analysis termed Leapfrog for automatically verifying the equivalence of two
different protocol parsers [], i.e., checking the correctness of a parser transformation. The key insight
is to represent protocol parsers using symbolic deterministic automata and the challenge is to formalize a classic
automata equivalence-checking algorithm in a proof assistant. As a result we adapt prior theory to packet parsers
and obtained an automatic equivalence algorithm. Moreover we can prove guarantees about the analysis so that
end-users have a high-degree of confidence in the result. This way, we combined the best of both the formal
methods and foundational verification, and we used our tool to certify correct the optimizing behavior of an
experimental open-source protocol compiler (Figure 1).

The main challenge in Leapfrog is to handle the large state-space of protocol parsers, which is a challenge for both
traditional automata equivalence algorithms and state-of-the-art tactics for solving bitvector verification conditions
(VCs) in Coq. My main contribution to Leapfrog is showing that our VCs are in a tractable fragment
of SMT logic, and developing a systematic technique to soundly and robustly discharge the VCs to
an off-the-shelf SMT solver.

During Leapfrog development, I gained an appreciation for the ability for interactive theorem provers to prove
very high-level, expressive specifications, such as the soundness of Leapfrog’s weakest-precondition procedure for
generating VCs. At the same time I also became frustrated at the proof burden required for building realistic
certified systems. Manual equivalence proofs for even simple parsers took around a week of manual effort; by con-
trast, after we developed the proof automation, such proofs became completely push-button and finish in seconds.
My most recent research, under preparation |], broadens Leapfrog’s push-button proof automation from
a domain-specific class of bitvector VCs to general Coq verification tasks.

This work, termed MirrorSolve, uses metaprogramming to move proof search from Coq to SMT solvers. To see
why this is necessary, it is helpful to consider how proofs are written in Coq. Most Coq proofs are written using
tactics which have three broad categories. First, decidable tactics completely solve goals within a small fragment
of logic (such as omega/lia, ring, and congruence); such tactics are powerful but limited by their respective logics
to the goals that they solve, and do not compose. For example a proof that requires reasoning about an inductive
constructor and arithmetic will not be solveable by either congruence or lia alone. A second category leverages
a particular class of SMT formulas and reconstructs proof terms from the output of the SMT solver (such as
sniper/SMTCoq and itauto). These tactics are more flexible but are still limited to the set of SMT theories for
which the respective algorithm can perform reconstruction. In particular the state-of-the-art SMTCoq is limited
to prenex-normal quantified formulas over integers, booleans, and bitvectors. A third category does best-effort
search for proofs using a combination of syntax-directed reasoning and heuristics (such as crush, hammer, and
intuition). Such search uses decidable tactics at the leaves of a proof and is very flexible, but does not solve all
goals.

MirrorSolve integrates modern SMT solvers, which can compose decidable reasoning between different theories,
within the tactic language of Coq. In addition, I developed automation for generating the translation from Coq
into first-order logic so that the user does not have to manually configure the entire verification condition. This
approach requires some preparation and manual configuration in order to set up the SMT tactic, but in turn
results in a powerful and flexible push-button tactic, solving a much broader set of first-order goals than the

state-of-the-art in search tactics (crush and hammer). The two technical challenges are soundly translating from
a broad class of rich Coq Propositions and (possibly recursive) functions to SMT queries, and ensuring that the
automation burden is low so that the tool is practically useful. Towards those ends I developed 1) certified reflective
metaprogramming techniques so that only the underlying SMT queries are trusted, 2) a subset of polymorphic
Coq inductive types that are amenable to SMT translation, and 3) metaprogramming techniques for building an
SMT theory from a set of Coq inductive types and functions. For an example of the technique, please see our
github repository at https://github.com/jsarracino/mirrorsolve.

Bench Total Crush Hammer MirrorSolve
SearchTree (helper) 27 13 (48%) 18 (67%) 26 (96%)
SearchTree (original) 24 3 (12%) 6 (25%) 24 (100%)
SearchTree (total) 51 16 (31%) 24 (47%) 50 (98%)
IntSets (helper) 1 0 (0%) 0 (0%) 1 (100%)
IntSets (original) 10 0 (0%) 0 (0%) 7 (70%)
IntSets (total) 11 0 (0%) 0 (0%) 8 (73%)
Maps (helper) 10 0 (0%) 2 (20%) 10 (100%)
Maps (original) 15 5(33%) 8 (53%) 15 (100%)
Maps (total) 25 5 (20%) 10 (40%) 25 (100%)
Groups (helper) 3 0 (0%) 3 (100%) 3 (100%)
Groups (original) 13 1(8%) 12 (92%) 13 (100%)
Groups (total) 16 1(6%) 15 (94%) 16 (100%)
Aggregate (helper) A1 13 (32%) 23 (56%) 40 (98%)
Aggregate (original) 62 9 (15%) 26 (42%) 59 (95%)
Aggregate (total) 103 22 (21%) 49 (48%) 99 (96%)

Table 1: Proof power of SMT-powered proof automation common Coq inductive proofs. Proofs are split between
the original properties of the library (original) and necessary helper lemmas for the proofs (helper).

Some preliminary results are given in Table 1. To evaluate the benefits of integrating SMT tactics in Coq, I
collected a set of benchmarks from the Verified Functional Algorithms textbook (SearchTree), the CompCert
certified C compiler (IntSets, Maps), and a group theory homework assignment from Certified Programming with
Dependent Types (Groups). Most of these proofs use induction, so I evaluated the ability of MirrorSolve to prove
the inductive sub-cases of proofs. I compared MirrorSolve against two state-of-the-art pushbutton proof search
tactics: crush and hammer. A proof is marked as solved by a tactic if the tactic solves all of the inductive subgoals
of the proof. I considered all of the proofs that were fundamentally first-order (or could be transformed to be
first-order), which consisted of 62 out of 79 proofs.” Overall I found that current search tactics can solve roughly
half of real-world Coq goals, while my SMT-powered automation of MirrorSolve can handle almost all proofs.

Future work

I am fascinated by three directions of future work: 1) better integration of SMT solvers with interactive theorem
provers; 2) building towards proof library synthesis; and 3) building certified systems in domains that have tradi-
tionally been underserved by formal methods. My research agenda is to build certified systems and to use that
experience to make certified systems development easier for mainstream programmers.

Better SMT Integration in Proof Assistants. In developing MirrorSolve and Leapfrog, I found that Coq (and
other proof assistants) does not have a clean way to interface with external SMT solvers. This is important because
solver-aided analyses (such as symbolic execution and program synthesis) are increasingly popular but cannot be
easily developed in a proof assistant. At best such analyses are modelled axziomatically, enabling verification of
high-level properties, but precluding other Coq programs and proofs from using the analyses. In MirrorSolve, I
developed a powerful technique for seamlessly converting Coq goals into SMT queries. I now want to develop the
reverse: to seamlessly translate from an SMT model or refutation back to a Coq term or proof, and to design an
interface around SMT theories to enable the implementation of modern solver-aided programs. One path forward
is to use Coq inductive types to represent the results of a solver call so that each call to an SMT solver is guarded
by a tactic application. In this way a CEGIS loop might be implemented using Coq’s repeat primitive and several
novel SMT tactics, with the result of the loop saved as a constructive proof witnessing the steps of the algorithm.

Proof Library Synthesis Would it not be great if proof assistants did not require manual proofs at all? Imagine
a world in which a programmer implements a functional program, writes a formal specification for that program,
and then a synthesizer generates a proof of that specification, as well as a library of helper lemmas (and proofs)

*Due to performance constraints I have evaluated only the first half of the Maps file. The entire Maps file has 84 proofs in total
of which 74 are fundamentally first-order.

https://github.com/jsarracino/mirrorsolve

necessary for the proof. While proof library synthesis is currently far beyond the reach of state-of-the-art proof
automation, there have been some promising advances that bring it closer to reality. There is a long line of work
on neural proof synthesis, which use neural networks to synthesize a proof script. These techniques are promising
but currently do not solve more than a quarter of the proofs in a realistic development. This is because they are
fundamentally limited by the strongest push-button tactic that is available to the proof search; for example, the
Proverbot9000 and TakTok synthesizers perform better when they have access to CogHammer.

My work on MirrorSolve is a leap forward in proof automation as compared to CoqgHammer. I would expect that
MirrorSolve would similarly impact the efficacy of neural proof search. At the same time, MirrorSolve proofs differ
from traditional proofs. The proof engineer must find the inductive structure of the proof and develop (and prove)
inductive sublemmas before attempting the proof. In addition, for larger libraries the engineer must be careful
about what lemmas are in scope for the SMT search. All these subtleties make neural search with MirrorSolve a
fundamentally different challenge than traditional neural proof synthesis. I am collaborating with Alex Sanchez-
Stern on a project for estimating the difficulty of a proof using learned models [], leading to 43%
shorter proofs requiring 44% fewer synthesis steps, and I am excited to bring the power of machine learning to
bear in the service of proof automation.

Applications of Formal Methods In Leapfrog, I collaborated with experts in networking to apply formal
methods to the networking area. I am excited to continue work at this intersection. For example, I am collaborating
on a project for specifying network-wide security policies using a NetKAT-style DSL [IR
specializing the policies to the nodes of the network, and synthesizing correct-by-construction P4 programs for
individual switches in the network. More generally, the networking community put significant thought and effort
into building networks that satisfy robust security policies, but because networking is traditionally underserved by
formal methods, there are no programmer tools for ensuring that high-level policies are implemented by network
switches. Another potential area for impact is the use of formal methods for developing high-assurance systems
software; for example, my work on certified dependent grammars could be generalized and applied to parsing
programs in the linux kernel in the style of EverParse []

I am excited to continue applications like these, in areas such as networking, systems, high-performance computing,
and security. Such collaborations are impactful for two reasons. First, they raise the overall level of assurance
available to programmers; for example, Leapfrog provides an analysis that networking operators can use in security-
critical packet parsers. Second, I use collaborations to uncover usability challenges with state-of-the-art formal
methods techniques; for example, my work in Leapfrog surfaced the limitations of current SMT integration in
proof assistants. In my future work I will build more certified systems and use that experience to
make certified programming a mainstream reality.

References

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. NetKAT: semantic foundations for networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, 2014.

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett. Leapfrog: Certified equivalence
for protocol parsers. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI ’22, 2022.

T Ramananandro, A Delignat-Lavaud, C Fournet, N Swamy, T Chajed, N Kobeissi, and J Protzenko. EverParse:
Verified secure zero-copy parsers for authenticated message formats. In 28th USENIX Security Symposium
(USENIX Security 19), USENIX ’19, 2019.

John Sarracino, Odaris Barrios-Arciga, Jasmine Zhu, Noah Marcus, Sorin Lerner, and Ben Wiedermann. User-
guided synthesis of interactive diagrams. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI *17, 2017.

John Sarracino, Dylan Lukes, Cora Coleman, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. Synthesis of
web layouts from examples. In Proceedings of the 29th ACM Joint Meeting on Furopean Software Engineering
Conference and Symposium on the Foundations of Software Engineering, FSE 21, 2021.

John Sarracino, Gang Tan, and Greg Morrisett. Certified parsing of dependent regular grammars. In 2022 IEEE
Security and Privacy Workshops (SPW), LangSec 22, 2022.

John Sarracino, Tobias Kappé, Ryan Doenges, and Greg Morrisett. Metaprogramming for practical and exten-
sible SMT-powered Coq proof automation. In In preparation, 2023a. URL https://goto.ucsd.edu/~john/
files/mirrorsolve.pdf.

John Sarracino, Alex Sanchez-Stern, and Abhishek Varghese. Lambdelphi: Predicting the difficulty of interactive
proofs. In In submission to ESEC/FSE 23, 2023b. URL https://goto.ucsd.edu/~john/files/lambdelphi.

https://goto.ucsd.edu/~john/files/mirrorsolve.pdf
https://goto.ucsd.edu/~john/files/mirrorsolve.pdf
https://goto.ucsd.edu/~john/files/lambdelphi

