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Abstract

SMT-based refinement typing is unsound under lazy evaluation.
When checking an expression, refinement systems implicitly as-
sume that all the free variables in the expression are bound to val-
ues. This property is trivially guaranteed by eager, but does not hold
under lazy, evaluation. Thus, to be sound and precise, a refinement
type system for Haskell must reason about which subset of binders
actually reduces to values. We present a stratified type system that
labels binders as potentially diverging or not, and that (circularly)
uses refinement types to verify the labeling. We have implemented
our system in LIQUIDHASKELL and present an experimental eval-
uation of our approach on more than 10,000 lines of widely used
Haskell libraries. We show that LIQUIDHASKELL is able to prove
96% of all recursive functions terminating, while requiring a mod-
est 1.7 lines of termination-annotations per 100 lines of code.

1. Introduction

Refinement types are unsound under Haskell’s lazy semantics. Re-
finement types encode invariants by composing types with SMT-
decidable refinement predicates [311/41], generalizing Floyd-Hoare
Logic (e.g. EscJava [16]) for functional languages. For example

type Pos = {v:Int | v > 0}
type Nat = {v:Int | v >= 0}

are the basic type Int refined with logical predicates that state
that “the values” v described by the type are respectively strictly
positive and non-negative. We encode pre- and post-conditions
(contracts) using refined function types like

div :: n:Nat -> d:Pos -> {v:Nat | v <= n}

which states that the function div requires inputs that are respec-
tively non-negative and positive, and ensures that the output is less
than the first input n. If a program containing div statically type-
checks, we can rest assured that executing the program will not
lead to any unpleasant divide-by-zero errors. By combining types
and SMT based validity checking, refinement types have auto-
mated the verification of programs with recursive datatypes, higher-
order functions, and polymorphism. Several groups have used re-
finements to statically verify properties ranging from simple array
safety [30} 41]] to functional correctness of data structures [22], se-
curity protocols [3]], and compiler correctness [35].

Given the remarkable effectiveness of the technique, we em-
barked on the project of developing a refinement type based veri-
fier for Haskell. The previous systems were all developed for eager,
call-by-value languages, but we presumed that the order of evalua-
tion would surely prove irrelevant, and that the soundness guaran-
tees would translate to Haskell’s lazy, call-by-need regime.

To our surprise, we were totally wrong. Our first contribution is
to show that standard refinement systems crucially rely on a prop-
erty of eager languages: when analyzing any term, one can assume
that all the free variables appearing in the term are bound to val-
ues. This property lets us check each term in an environment where
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the free variables are logically constrained according to their re-
finements. Unfortunately, this property does not hold for lazy eval-
uation, where free variables can be lazily substituted with arbitrary
(potentially diverging) expressions, which breaks soundness (§[2).

The two natural paths towards soundness are blocked by chal-
lenging problems. The first path is to conservatively ignore free
variables except those that are guaranteed to be values e.g. by pat-
tern matching, seqg or strictness annotations. While sound, this
leads to a drastic loss of precision. The second path is to explicitly
reason about divergence within the refinement logic. While sound
and precise, this route makes the refinement logic three-valued,
making it impossible to use existing SMT machinery (§[8).

Our second contribution, is a novel approach that enables sound
and precise checking with existing SMT solvers, using a stratified
type system that labels binders as potentially diverging or not (§[d).
While previous stratified systems [[L1] would suffice for soundness,
we show how to recover precision by using refinement types to
develop a notion of terminating fixpoint combinators that allows the
type system to automatically verify that a wide variety of recursive
functions actually terminate (§ ).

Our third contribution is an extensive empirical evaluation of
our approach on more than 10, 000 lines of widely used complex
Haskell libraries. We have implemented our approach in LIQUID-
HASKELL, an SMT based verifier for Haskell. LIQUIDHASKELL is
able to prove 96% of all recursive functions terminating, requiring
amodest 1.7 lines of termination annotations per 100 lines of code,
thereby enabling the sound, precise, and automated verification of
functional correctness properties of real-world Haskell codes (§[6).

2. Overview

We start with an overview of our contributions. After recapitulat-
ing the basics of refinement types we illustrate why the classical
approach based on verification conditions (VCs) is unsound due to
lazy evaluation. Next, we step back to understand precisely how the
VCs arise from refinement subtyping, and how subtyping is differ-
ent under eager and lazy evaluation. In particular, we demonstrate
that under lazy (but not eager) evaluation, the refinement type sys-
tem, and hence the VCs, must explicitly account for divergence.
Consequently, we develop a type system that accounts for diver-
gence in a modular and syntactic fashion, and illustrate its use via
several small examples. Finally, we show how a refinement-based
termination analysis can be used to improve precision, yielding a
highly effective SMT-based verifier for Haskell.

2.1 Standard Refinement Types: From Subtyping to VC

First, let us see how standard refinement type systems [23,130] will
use the refinement type aliases Pos and Nat and the specification
for div from §[I]to reject bad and accept good.

bad :: Nat -> Nat -> Int
bad x y = x ‘div' vy
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good :: Nat -> Nat -> Int
good x y = x ‘div' (y + 1)

Refinement Subtyping To analyze the body of bad, the refinement
type system will check that the second parameter y has type pPos at
the call to div; formally, that the actual parameter y is a subtype of
the type of div’s second input, via a subtyping query:

x:{x>0},y:{y>0} b {v>0}={v>0}

Verification Conditions To discharge the above subtyping query,
a refinement type system, generalizing the classical Floyd-Hoare
Logic [18]], generates a verification condition (VC). A VC is a log-
ical formula that stipulates that under the assumptions correspond-
ing to the environment bindings, the refinement in the sub-type im-
plies the refinement in the super-type.

(x>0)A(y>0) = (v>0)= (v>0)

Refinement type systems are carefully engineered (§[4) so that (un-
like with full dependent types) the logic of refinements precludes
arbitrary functions and only includes formulas from efficiently de-
cidable logics, e.g. the quantifier-free logic of linear arithmetic and
uninterpreted functions (QFLIA), and so VCs like the above can be
efficiently validated by SMT solvers [13]. In this case, the solver
will reject the above VC as invalid meaning the implication, and
hence, the relevant subtyping requirement does not hold. So the re-
finement type system will reject bad.

On the other hand, a refinement system accepts good. Here, the
subtyping query for the argument to div is

x:{x>0}, y:{y>0} F{v=y+1} Z{v>0}t (D
which reduces to the valid VC
(x20)A(y20) =Fv=y+1)=(F>0) (2

2.2 Lazy Evaluation Makes VCs Unsound
Lazy evaluation renders the above technique unsound. Consider

diverge Int —> {v:Int | false}
diverge n = diverge n

The output type captures the post-condition that the function re-
turns an Int satisfying false. This counter-intuitive specifica-
tion states, in essence, that the function does not terminate, i.e.
does not return any value. Any standard refinement type checker
(or Floyd-Hoare verifier like Dafnyﬂ) will verify the given signa-
ture for diverge via the classical method of inductively assuming
the signature holds for diverge and then guaranteeing the signa-
ture [18}25]]. Next, consider the call to div in explode:

explode Int -> Int
explode x = let {n = diverge 1; y = 0}
in x ‘div' y

To analyze explode, the refinement type system will check that y
has type Pos at the call to div, i.e. will check that

n: {false}, y:{y=0} F{v=0} < {v>0} 3)
In the subtyping environment n is bound to the type corresponding
to the output type of diverge, and y is bound to the singleton
type stating y equals 0. In this environment, we must prove that

actual parameter’s type — i.e. that of v — is a subtype of Pos. The
subtyping, as previously [2.I]discussed, reduces to the VC:

false A\y=0 = (v=0)= (v >0) “)

The SMT solver proves this VC valid by using the contradiction in
the antecedent, thereby unsoundly proving the call to div safe!

Uhttp://rise4fun.com/Dafny/wVGce

Eager vs. Lazy Verification Conditions At this point, we pause
to emphasize that the problem lies in the fact that the classical
technique for encoding subtyping (or generally, Hoare’s “rule of
consequence” [18]) with VCs is unsound under lazy evaluation.
To see this, observe that the VC (@) is perfectly sound under eager
(strict, call-by-value) evaluation. In the eager setting, the program is
safe in that div is never called with the divisor 0, as it is not called
at all! The inconsistent antecedent in the VC logically encodes the
fact that, under eager evaluation, the call to div is dead code. Of
course, this conclusion is spurious under Haskell’s lazy semantics!
As n is not required, the program will dive headlong into evaluating
the div and hence crash, rendering the VC meaningless.

The Problem is Laziness (Not Recursion) Readers familar with
fully dependently typed languages like Cayenne [2], Agda [26],
Coq [6], or Idris [8], may be tempted to attribute the unsoundness
to the presence of arbitrary recursion and hence non-termination
(e.g. in diverge). In dependently typed languages, arbitrary terms
may appear in types. Thus, arbitrary recursion can lead to non-
terminating functions that make it impossible to define the seman-
tics of types, and to check type equivalence.

However, in the refinement setting, recursion is not the problem.
The types are carefully engineered to not contain arbitrary terms,
but only contain formulas from restricted logics that preclude ar-
bitrary user-defined functions [15| I35} |41]]. Thus, termination has
never been an issue with refinement type systems. Indeed, we will
show how to make refinement types sound under laziness without
restricting recursion or requiring proofs of termination.

2.3 Semantics, Subtyping & Verification Conditions

To understand the problem, let us take a step back to get a clear
view of the relationship between the operational semantics, sub-
typing, and verification conditions. We use the formulation of
evaluation-order independent refinement subtyping developed for
A [23]] in which refinements are arbitrary expressions. We define
a denotation for types and use it to define subtyping declaratively.
Denotations of Types and Environments Recall pos defined as
{v:Int | 0 < v}. Intuitively, Pos denotes the set of Int expres-
sions which evaluate to values greater than 0. We formalize this
intuition by defining the denotation of a type as:

[{z:t|p}] = {e|DFe:t ife =" vthenpv/z] =" true}

That is, the type denotes the set of expressions e that have the
corresponding base type t which diverge or reduce to values that
make the refinement reduce to true. Thus, quoting [23], “refine-
ment types specify partial and not total correctness”.
An environment I is a sequence of type bindings, and a closing
substitution 6 is a sequence of expression bindings:
' = z1m1,... 0T 0 = x1V>e1,...,Tn > €n
Thus, we define the denotation of I" as the set of substitutions:
[I] = {6 | Va:r € T.0(x) € [6(7)]}

Declarative Implication & Subtyping Equipped with interpreta-
tions for types and environments, we define the declarative impli-
cation T-IMP rule between refinements:

V6.0 € [I'] = 6(p1) —~ true = O(p2) —* true
I'Fpi=po

Finally, we define declarative subtyping D-SUB (over base types
B) to be declarative implication between the refinements:

I'x:BFp1 = ps
PH{x:B|pi} 2 {«=:B | p2}

T-IMP

D-SuB

Declarative Subtyping with Lazy Evaluation Let us revisit the
query (@) to see whether it holds under the declarative subtyping
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rule D-SUB. The query reduces to the declarative implication:
n:{false}, y: {y=0}, v:IntFv=0=0v>0 (5

This implication does not hold, as shown by € that maps n to any
diverging expression of type Int, and y and v to the value 0.

Declarative Subtyping with Eager Evaluation Since the implica-
tion || is invalid, A cannot verify explode under eager evalua-
tion. However, Belo et al. [4] note that under eager (call-by-value)
evaluation, each binder in the environment is only added after the
previous binders have been reduced to values. Hence, under eager
evaluation we can restrict the range of the closing substitutions to
values (as opposed to expressions). Let us reconsider (B) in this
new light: there is no value that we can map n to, so the set of de-
notations of the environment is empty. Hence, the implication (@)
vacuously holds under eager evaluation, which proves the program
safe. Belo’s observation is implicitly used by refinement types for
eager languages to prove that the standard (as presented in re-
duction from subtyping to VC is sound.

Algorithmic Subtyping via Verification Conditions The above sub-
typing (D-SUB) and implication (T-IMP) rules allow us to prove
preservation and progress [23]] but quantify over evaluation of arbi-
trary expressions, and so are statically undecidable. To make check-
ing algorithmic we approximate the implication using verification
conditions (VCs), formulas drawn from a decidable logic, that are
valid only if the undecidable implication holds. As we have seen,
the classical VC is sound only under eager evaluation. Next, let us
use the distinctions between lazy- and eager- declarative implica-
tion, to obtain sound, decidable VCs for the lazy setting.

Step 1: Restricting Refinements To Decidable Logics Given that in
A refinements can be arbitrary expressions, the first step towards
obtaining a VC, regardless of evaluation order, is to restrict the
refinements to a decidable logic. We choose the quantifier free
logic of equality, uninterpreted functions, linear arithmetic, and
data constructors (QF-EUFLIAD). We carefully design our typing
rules to ensure that for any derivation tree, starting with types
refined from the language of the decidable logic, the refinements
of all intermediate types are also restricted to this language.

Step 2: Translating Implications into VCs Recall that our goal is
to encode the antecedent of T-IMP

V0.0 € [T] = 0(p1) —" true = O(p2) & true

as a logical formula, that is valid only when the above holds. Intu-
itively, we can think of the closing substitutions 6 as corresponding
to assignments or interpretations (|0]) of variables X of the VC.
Thus, we will translate the above antecedent into a VC

VX.(T) = (p1) = (p2)

where (I')) and (Jp;|) are the translation of the environment, and
refinements into logical formulas that are only satisfied by as-
signments (|0]) that respectively correspond to closing substitutions
0 € [I'] and 6(p;) <™ true. As refinements p; are from the logic,
they can be trivially translated into formulas, i.e. (p;) = p;. We
translate environments by conjoining their bindings:

(1711, oy znmn) = (zem) Ao A (207
However, since types denote partial correctness, the translations
must also explicitly account for possible divergence:

(z:{v:B | p}) = “xisavalue” = plz/v]

That is, we cannot assume that each x satisfies its refinement p; we
must guard that assumption with a predicate stating that x is bound
to a value (not a diverging term.)

A crucial question that arises is how and when can one discharge
these guards to conclude that x indeed satisfies p. One natural route

is to enrich the refinement logic with a predicate that states that “z
is a value”, and then use the SMT solver to explicitly reason about
this predicate and hence, divergence. Unfortunately, we show in
§[8] that such predicates lead to three-valued logics, and hence, are
outside the scope of the efficiently decidable theories supported by
current solvers. Hence, this route is problematic if we want to use
existing SMT machinery to build automated verifiers for Haskell.

2.4 Our Answer: Implicit Reasoning About Divergence

One way forward is to implicitly reason about divergence by elimi-
nating the “x is a value” guards (i.e. value guards) from the VCs.

Implicit Reasoning: Eager Evaluation Under eager evaluation the
domain of the closing substitutions can be restricted to values [4].
Thus, we can trivially eliminate the value guards, as they are guar-
anteed to hold by virtue of the evaluation order! Returning to
explode, we see that after eliminating the value guards, we get
the VC (F_f]) which is, therefore, sound under eager evaluation.

Implicit Reasoning: Lazy Evaluation However, with lazy evalua-
tion, we cannot just eliminate the value guards, as the closing sub-
stitutions are not restricted to just values. Our solution is to take
this reasoning out of the hands of the SMT logic and place it in the
hands of a stratified type system in which each type is labeled as:
A Div-type, written 7, which are the default types given to binders
that may diverge, or, a Wnf-type, written 7+, which are given to
binders that are guaranteed to reduce to Haskell values, i.e. to Weak
Head Normal Form (WHNF), or, a Fin-type, written 7Y, which are
given to binders that are guaranteed to reduce to finite values. This
stratification lets us generate VCs that are sound for lazy evalua-
tion. The key piece is the translation of environment bindings:

true, if B is a Div type
plz/v], otherwise

(z:{v:B [p}) = {

That is, if the binder may diverge, we simply omit any constraints
for it in the VC, and otherwise the translation directly states (i.e.
without the value guard) that the refinement holds. Returning to
explode, the subtyping query (B) yields the invalid VC

true=v=0=v>0

and so explode is soundly rejected under lazy evaluation.

2.5 Verification With Stratified Types

While it is reassuring that the lazy VC soundly rejects unsafe
programs like explode, we now demonstrate by example that
it usefully accepts safe programs. First, we show how the basic
system — all terms have Div types — allows us to prove “partial
correctness” properties without requiring termination. Second, we
show how to extend the basic system by using Haskell’s pattern
matching semantics to assign the pattern match scrutinees Wnf
types, thereby increasing the expressiveness of the verifier. Third,
we show how to further improve the precision and usability of the
system by using a termination checker to assign various terms Fin
types. Fourth, we close the loop, by illustrating how the termination
checker can itself be realized using refinement types.

Example 1: VCs and Partial Correctness The first example illus-
trates how, unlike Curry-Howard based systems, refinement types
do not require termination. That is, we retain the Floyd-Hoare
notion of “partial correctness”, and can verify programs where
all terms have Div-types. Consider ex1 which uses the result of
collatz as a divisor.

exl :: Int -> Int
exl n = let x = collatz n in 10 ‘div®' x

collatz Int —> {v:Int | v = 1}
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collatz n
| n == =1
| even n collatz (n / 2)
| otherwise = collatz (3*n + 1)

The jury is still out on whether the collatz function termi-
nates [1]], but it is easy to verify that its output is a Div Int equal
to 1. At the call to div the parameter x has the output type of
collatz, yielding the subtyping query:

x{v:Int [v=1}F{v=1} < {v>0}

where the sub-type is just the type of x. As Int is a Div type, the
above reduces to the VC (true = v =1= v > 0) which the
SMT solver proves valid, thereby verifying ex1.

Example 2: Improving Precision By Pattern Matching If all
binders in the environment have Div-types then, effectively, the
verifier can make no assumptions about the context in which a term
evaluates, which leads to a drastic loss of precision. Consider:

head :: {v:[a] | not (emp v)} —-> a
head xs = case xs of

(x:_) —> x

[] -> error "yikes"

error :: {v:String | false} -> a
error = undefined

where emp is a measure [22] (or logical function [35]):

measure emp :: [a] —> Prop
emp [] = true
emp (x:xs) = false

head is safe as its input type stipulates that it will only be called
with lists that are not [], and so error "..." is dead code.
However, the call to error generates the subtyping query

xs:{xs:[a] | —(emp xs)
b:{b:[a] | (emp xs)}
The match-binder b holds the result of the match [34]]. In the []
case, we assign it a refinement (emp xs) as the measure is true for
empty lists [22]. The verifier would reject the program as the above
subtyping reduces to the invalid VC (true = true = false).
We address this problem by observing that a pattern match
forces evaluation. Hence, inside each case of the case-of expres-
sion, the scrutinee and match binder are guaranteed to be Haskell
values in WHNF. This intuition is formalized by the typing rule (T-
CASE), which checks each case after assuming the scrutinee and
the match binder have Wnf types. With this optimization, the call
to error yields the subtyping query:

} F {true} < {false}

xs:{xs:[a]* | ~(emp xs)}

b:{b:[a]* | (emp xs)}
That is, both xs and b have Wnf types. Now, the verifier accepts
the program as the above subtyping reduces to the valid VC

F {true} < {false}

—(emp xs) A (emp xs) = true = false

The above method also applies to terms that have been seg-ed or
have strictness annotations. Consequently, our system can naturally
support idiomatic Haskell, e.g. taking the head of an infinite list:

ex2 x = head (repeat x)

repeat a —> {v:[a] | not (emp v)}
repeat y = y : repeat y

Example 3: Improving Precision By Termination While pattern
matching allows us to ensure that certain environment binders have
non-Div types, the system still lacks expressivenes leading to many
false alarms (§ |§|) For example, consider:

ex3 = let {x = 1; y = inc x} in 10 ‘div‘' y

inc :: z:Int —> {v:Int | v > z }
inc = \z —> z + 1

The call to div in ex3 is obviously safe, but the system would
reject it, as the call yields the subtyping query:

x{xInt | x =1}, y:{y:Int |y > x} F{v>x} < {v>0}
Which, as x is a Div type, reduces to the invalid VC
true = v>x=>0v>0

We could solve the problem by matching against x but that would
lead to rather ugly, and non-idiomatic code.

Instead, our next key optimization is based on the observation
that in practice, most terms don’t diverge. Thus, we can use a ter-
mination analysis to aggressively assign terminating expressions
Fin types, which lets us strengthen the environment assumptions
needed to prove the VCs. For example, the term 1 obviously termi-
nates. Hence, we type = as Int", yielding the subtyping query:

x: {x:Int¥ | x =1}
y :{y:Int | y > x}
As x is Fin, we accept ex3 by proving the validity of the VC

F{v>x}<{v>0} (6)

x=1l=2v>x=v>0 (@)

Example 4: Verifying Termination With Refinements While it is
straightforward to conclude that the term 1 does not diverge, how
do we do so in general? For example:

ex4 = let {x = £ 9; y = inc x} in 10 ‘div‘' y

f :: Nat -=> {v:Int | v = 1}
fn=431if n == 0 then 1 else f (n-1)

We check the call to div via subtyping query (6) and VC (7), which
requires us to prove that £ terminates on all Nat¥ inputs.

We solve this problem by showing how refinement types may
themselves be used to prove termination, by following the classical
recipe of proving termination via decreasing metrics [36] as em-
bodied in sized types [19} |40]]. The key idea is to show that each
recursive call is made with arguments of a strictly smaller size,
where the size is itself a well founded metric, e.g. a natural number.

We formalize this intuition by type checking recursive proce-
dures in a termination-weakened environment where the procedure
itself may only be called with arguments that are strictly smaller
than the current parameter (T-REC-7). For example, to prove £ ter-
minates, we check its body in an environment

n: Nat! £:{n'Nat |0’ <n} = {v=1}

where we have weakened the type of £ to stipulate that it only be
(recursively) called with Nat values n’ that are strictly less than the
(current) parameter n. The body type-checks as the recursive call
generates the valid VC

0<nA-(0=n)=v=n-1=(0<v<n)

3. Declarative Typing: \Y

Next, we formalize our stratified refinement type system, in two
steps. First, in this section, we present a core calculus AV, with a
general S-reduction semantics. We describe the syntax, operational
semantics, and sound but undecidable declarative typing rules for
AY. Second, in § we describe QF-EUFLIAD, a subset of AY that
forms a decidable logic of refinements, and use it to obtain A with
decidable SMT-based algorithmic typing.
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Constants ¢ == 0,1,-1,... | true,false
| +,—,... |=,<,... | crash
Values v = c¢| e | De
Expressions e == w|xz|ee| letz=eine
| casex=¢cof{DT— e}
Basic Types B == int | bool | T
Types T u= {vBle} | T o7
Contexts C == e | Ce|cC | DeCe
| casex=Cof{Dy—e}
Reduction e—e
Cle] <= Clé] ife ¢
cv = 0(e,v)
(Az.€) ex — eleq/x]
letx =ezine — eles/7]
casex =Djeof {D;yi —e;} < e;[D;e/x][e/y;]

Figure 1. \V: Syntax and Operational Semantics

3.1 Syntax

Figure summarizes the syntax of AY, which is essentially the cal-
culus A [23] without the dynamic checking features (like casts),
but with the addition of data constructors.

Constants The primitive constants of AV include true, false, 0,
1, —1, efc., and arithmetic and logical operators like +, —, <,/, A,
—. In addition, we include a special untypable constant crash that
models “going wrong”. Primitive operations return a crash when
invoked with inputs outside their domain, e.g. when / is invoked
with 0 as the divisor, or when assert is applied to false.

Data Constructors We encode data constructors as special con-
stants. Each data type has an arity Arity(7") that represents the exact
number of data constructors that return a value of type 7'. For ex-
ample the data type NList, which represents lists of integers, has
two data constructors: NNull and NCous, i.e. has arity 2.

Values & Expressions The values of AU include constants, \-
abstractions Az.e, and fully applied data constructors D that wrap
expressions. The expressions of AU include values, as well as
variables x, applications e e, and the case and let expressions.

3.2 Operational Semantics

Figure[5] summarizes the small step contextual 3-reduction seman-
tics for AV. Note that we allow for reductions under data construc-
tors, and thus, values may be further reduced. We write e <7 ¢’ if
there existe1, . .., e; such that eis eq, €’ is e; and Vi, 5,1 < i < 7,
we have e; < e;11. We write e —* ¢’ if there exists some (finite)

j such that e <7 €.

Constants Application of a constant requires the argument be re-
duced to a value; in a single step the expression is reduced to the
output of the primitive constant operation. For example, consider
=, the primitive equality operator on integers. We have 6(=,n) =
=,, where 6(=,,m) equals true iff m is the same as n.

3.3 Types

AV types include basic types, which are refined with predicates,
and dependent function types. Basic types B comprise integers,
booleans, and a family of data-types 1" (representing lists, trees
etc..) For example the data type NList represents lists of integers.
We refine basic types with predicates (boolean valued expressions

€) to obtain basic refinement types {v:B | e}. Finally, we have
dependent function types x:17, — T where the input x has the type
7z and the output 7 may refer to the input binder x.

Notation We write B to abbreviate {v:B | true}, and 7, — 7
to abbreviate x:7, — 7 if x does not appear in 7, or 7. We use
p, q, and r for refinements, and use _ for unused binders. We write
{vnat! | p} to abbreviate {v:int' | 0 < v A p}.

Denotations Each type T denotes a set of expressions [7], that are
defined via the dynamic semantics [23]]. Let || be the type we
get if we erase all refinements from 7 and e:| 7] be the standard
typing relation for the typed lambda calculus. Then, we define the
denotation of types as:

[{z:B | p}] ={e|e:B, ife =" vthenpv/z] =" true}
[x:me = 7] ={e|e|ma = 7],Ver € [12]. e €z € [T [ex/2]]}

Constants Each constant c is in the denotation of its type Ty(c):

Ty(3) = {vint |v =3}
Ty(+) = giint — yiint — {viint |v =z + y}
Ty(/) = int — {viint |v > 0} — int
Ty(error,) = {v:int|false} — 7

Thus, if Ty(¢c) = 7, — 7, then for every value v € [7],

we require that §(c,v) € [ [v/z]]. For every value v & [74], it
suffices to define 6(c, v) as crash, a special untyped value.

Data Constructors The types of data constructor constants are
refined with predicates that track the semantics of the measures
associated with the data type. For example, recall the measure emp
shown in §[2.5] We encode it as a function emp defined as:

NNull — true }

emp = A\z.case - = x of { NCons . —s false

and use emp to refine the data constructors’ types:

Ty(NNull) =
Ty(NCons) =

{v:NList | emp v}
int — NList — {v:NList | =(emp v)}

We compose multiple measures for a type by refining the construc-
tors with the conjunction of each measure’s refinements.

3.4 Type Checking
Next, we present the type-checking judgments and rules of AU

Environments and Closing Substitutions A type environment T’
is a sequence of type bindings x1:71, ..., Zn:Ty. An environment
denotes a set of closing substitutions @ which are sequences of
expression bindings: x1 +— e1,..., T, — e, such that:

[T] = {6 |Ve:ir €T.60(z) € [0(7)]}

Judgments We use environments to define four kinds of rules:
Well-formedness, Subtyping, Implication, and Typing [5 23]. A
judgment I" - 7 states that the refinement type 7 is well-formed in
the environment I'. Intuitively, the type 7 is well-formed if all the
refinements in 7 are bool-typed in I'. A judgmentI' - 71 X 7
states that the type 7 is a subtype of 7> in the environment I'.
Informally, 7 is a subtype of 7 if, when the free variables of 71 and
T2 are bound to expressions described by I', the denotation of 7 is
contained in the denotation of 72. Subtyping of basic types reduces
to implication checking. A judgment I' = p; = po states that the
predicate p; implies the predicate p» in the environment I'. That
is, for any closing substitution 0 in the denotation of T, if 6(p1)
reduces to true, then so does f(p2). A judgment I" - e : 7 states
that the expression e has the type 7 in the environment I'. That is,
when the free variables in e are bound to expressions described by
T, the expression e will evaluate to a value described by 7.
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Well-Formedness '~
I'v:B F e : bool
' {v:B | e}

k7 Dyxry b1
'kFary — 71

WF-BASE

WEF-FUN

Tv:bFe = ez
<-BASE
PE{vble} <{vb|e} ~
'rFr. <1, DaxrmbEr=<1
=<-FUN
NFaore w7 =2a7, =7
Implication

V0.0 € [I'] = 6(e1) =~ true = O(e2) —™ true

I'kel=es TImp
(z,7) €T

T-VAR —————— T-CON
'ka:7 I'kc:Ty(e)

-7 <7 Tkr7
I'kFe:r

Do be:r

T-SuB

' 7.
L'k Xze: (vt — 1)

Trei:(zims —7) The:m
T'keiex:Tlea/x]

I'tey:m7w Dyzmpbe:r T'hHrT
I'tletz=ezine: 7
Fke:{vT|er} r+r
Vi.0 < i < Arity(T).(

Ty(Dr,) = y1:71 = -+ = Yn:Tn — {0:T | er, }
Dy, x{vT |er Ner,} Fes:T)

T-FuN

T-ApP

T-LET

T-CASE
IPhcasex=eof {Dr,y; = e€i}:T

Figure 2. Type-checking for AV

Soundness Following M [23]], we use the (undecidable) T-IMP to
show that each step of evaluation preserves typing, and that if an
expression is not a value, then it can be further evaluated:

e Preservation: If ) - e: 7ande < €', then ¢ : 7.
e Progress: If ) - e : 7and e # v, thene < ¢'.

We combine the above to prove that evaluation preserves typing,
and that a well typed term will not crash.

Theorem 1. [Soundness of AV

o Type-Preservation: If ) t e:T and e =™ v then ) - v:T.
o Crash-Freedom: If ) - e:T then e &+* crash.

We prove the above following the overall recipe of [23]]. Crash-
freedom follows from type-preservation and as crash has no type.
The Substitution Lemma, in particular, follows from a connection
between the typing relation and type denotations:

Lemma 1. [Denotation Typing] If 0 - e : T then e € [7].

Label | == |||
Types 7 = {v:B|p} | {v:B'|p} | mr =7
Implication

I') = is u-valid
(T) = (p1) = (p2) is u-vali -
'k p1=p2
I'v:BF
A PL= P <-BASE
LF{v:B |p1} 2 {v:B | p2}
Lhe:(wm—71) Thy:m T-ApP

F'keiy:7ly/x]

1¢{lJ,}}=7isDiv Tte:{vTl'|er} Thkr
. Vi.0 < i < Arity(T).(
Ty(D}) =yiimi = -+ = ynimn — {v:T | er, }
Ly, o {vT |er Aer,} e :T)
T'kcasex=cof {Diy; —ei}:7

Figure 3. From \V to AP

Operators & == + | —-]...
Measures f o= emp | ...
Integers n == 0]1]-1]...
Terms t == n|xz| ft|Dt]|tdt
| true | false
Predicates p u= t=t|t<t|t|pAp]| —p
Domain d = n|c | Dd| true | false
Model o = T1—di,...,Tn—dy
L

Lifted Values v c| Aze | Dol | L

Figure 4. Syntax of QF-EUFLIAD

4. Algorithmic Typing: \”

While AV is sound, it cannot be implemented thanks to the un-
decidable implication checking rule T-IMP (Figure [2). Next, we
go from AY to AP, a core calculus with sound, SMT-based algo-
rithmic type-checking in four steps, summarized in Figure[3] First,
we show how to restrict the language of refinements to an SMT-
decidable sub-language QF-EUFLIAD (§[i.1). Second, we stratify
the types to specify whether their inhabitants may diverge, must re-
duce to values, or must reduce to finite values (§ . Third, we
show how to enforce the stratification by encoding recursion us-
ing special fixpoint combinator constants (§ [4.2). Finally, we show
how to use QF-EUFLIAD and the stratification to approximate the
undecidable T-IMP with a decidable verification condition D-IMP,
thereby obtaining the algorithmic system AP (§ .

4.1 Refinement Logic: QF-EUFLIAD

Figure f] summarizes the syntax of QF-EUFLIAD, the decidable
logic of equality, uninterpreted functions, linear arithmetic, and
data types [13}124]]. Logical expressions include integers, booleans,
variables, function application, data constructors, and linear arith-
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metic expressions. A predicate is a (boolean) expression, equality
or inequality between terms, or boolean combination of predicates.

Measures & Axioms The only function symbols in QF-EUFLIAD
correspond to measures, which are inductively defined functions.
Each measure definition is a sequence of equations, one per data
constructor, where the body of each equation is a term in QF-
EUFLIAD. We characterize measures using axioms translated from
the measure definition. For example, emp from §[2]yields axioms:

(emp NNull) Va,xs.—(emp (NCons x xs))

Well-Formedness For a predicate to be well-formed, arithmetic op-
erators should be applied to integer terms, measures should be ap-
plied to appropriate arguments (i.e. emp is applied to NList), and
equality or inequality to basic (integer or boolean) terms. Further-
more, we require that refinements, and thus measures, always eval-
uate to a value. We capture these requirements by assigning ap-
propriate types to operators and measure functions, after which the
judgment @ - p : bool checks well-formedness.

Assignments Figure ] defines the elements d of the domain D of
integers, booleans, and data constructors that wrap elements from
D. The domain D also contains a constant ¢, for each value v of
AU that does not otherwise belong in D (e.g. functions or other
primitives). An assignment o is a map from variables to D.

Satisfiability & Validity We interpret predicates in the logic over
the domain D. We write o |= p (resp. o |=p p) if o is amodel of p
where the interpretations of measures respect the measure axioms
(resp. measures are uninterpreted). We omit the formal definition
for space. A predicate p is satisfiable (resp. u-satisfiable) if there
exists o = p (resp. o |=p p). A predicate p is valid (resp. u-valid)
if all assignments o |= p (resp. o =p p). Note that if p is u-valid
then p is trivially valid.

Connecting Evaluation and Logic To prove soundness, we need to
formally connect the notion of logical models with the evaluation
of a refinement to true. We do this in several steps, briefly outlined
for brevity. First, we introduce a primitive bottom expression 1
that can have any Div type, but does not evaluate. Second, we
define lifted values v* (Figure , which are values that contain L.
Third, we define lifted substitutions 6>, which are mappings from
variables to lifted values. Finally, we show how to embed a lifted
substitution 0 into a set of assignments (6| where, intuitively
speaking, each L is replaced by some arbitrarily chosen element of
D. Now, we can connect evaluation and logical satisfaction:

Theorem 2. If() - 6 (p) : bool, then
0+ (p) =" trueiff Vo € (0~ ).0 =p

Restricting Refinements to Predicates Our goal is to restrict T-IMP
so that only predicates from the decidable logic QF-EUFLIAD (not
arbitrary expressions) appear in implications I' = p; = p». To-
wards this goal, as shown in Figure [3] we restrict the syntax and
well-formedness of types to contain only predicates, and we con-
vert the program to ANF after which we can restrict the application
rule T-APP to applications to variables, which ensures that refine-
ments remain within the logic after substitution [30].

4.2 Stratified Types

Instead of explicitly reasoning about divergence or strictness in the
refinement logic (which leads to significant theoretical and practi-
cal problems, as discussed in § [8), we choose to reason implicitly
about divergence within the type system. Thus, the second critical
step in our path to AP is the stratification of types into those inhab-
ited by potentially diverging terms, terms that only reduce to values,
and terms which reduce to finite values. Furthermore, the stratifica-
tion crucially allows us to prove Theorem [I0] which requires that

refinements do not diverge (e.g. by computing the length of an in-
finite list) by ensuring that inductively defined measures are only
applied to finite values. Next, we describe how we stratify types
with labels, and then type the various constants, in particular the
fixpoint combinators, to enforce stratification.

Labels We specify stratification using two labels for types. The la-
bel | (resp. |}) is assigned to types given to expressions that reduce
to a value v (resp. finite value, i.e. an element of the inductively
defined D). Formally,

Waftypes  [{v:B* | p}] =[{v:B [p}]n{e|e="v} @
Fin types [[{'U:BU | p}] = [[{v:BL [pHINn{e|e="d} 9)

Unlabelled types are assigned to expressions that may diverge. Note
that for any B and refinement p we have

[{v:B* | p}] € [{v:B" | p}] € [{v:B | p}]
The first two sets are equal for int and bool, and unequal for
(lazily) constructed data types 7. We need not stratify function
types (i.e. they are Div types) as binders with function types do
not appear inside the VC, and are not applied to measures.

Enforcing Stratification We enforce stratification in two steps.
First, the T-CASE rule uses the operational semantics of case-of
to type-check each case in an environment where the scrutinee x is
assumed to have a Wnf type. All the other rules (not mentioned) in
Figure[3remain the same as in Figure[2] Second, we create stratified
variants for the primitive constants and separate fixpoint combina-
tor constants for (arbitary, potentially non-terminating) recursion
(fix) and bounded recursion (tfix).

Stratified Primitives First, we restrict the primitive operators whose
output types are refined with logical operators, so they are only
invoked on finite arguments (so that the corresponding refinements
are guaranteed to not diverge).

Ty(n) = {v:int* | v =n}

Ty(=) =2:B* = y:BY = {vbool* |v &z =y}

Ty(4+) =z:int? — yint® — {vint* v =2 +y}

Ty(A) = z:bool’ — y:bool? — {vbool’ | v & z Ay}

It is easy to prove that the above primitives respect their stratifi-
cation labels, i.e. belong in the denotations of their types. The only
place where divergence enters the picture is through the fixpoint

combinators used to encode recursion. For any function or basic
type T = T1 — ... — Tn, we define the result to be the type 7.

Diverging Fixpoints (fix,) For each 7 whose result is a Div type,
there is a diverging fixpoint combinator £ix ., such that
5(tix,, f) = f (tix, f)
Ty(fix,) = (1 —>7) =7
i.e., fix, yields recursive functions of type 7. Of course, fix
belongs in the denotation of its type [29] only if the result type is a

Div type (and not when the result is a Wnf or Fin type). Thus, we
restrict diverging fixpoints to functions with Div result types.

Indexed Fixpoints (t£ix?) For each type 7 whose result is a Fin
type, we have a family of indexed fixpoints combinators tfix’:

§(efix}, f) = dIm.f m (tfix] f)
Ty(tfix?) = (nmat® =7, = 7) = 7,
where, 7, = {vmnat |v<n} =7

Tn 18 @ weakened version of 7 that can only be invoked on inputs
smaller than n. Thus, we enforce termination by requiring that
tfix? is only called with m that are strictly smaller than n. As
the indices are well-founded nats, evaluation will terminate.
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Terminating Fixpoints (tfix,) Finally, we use the indexed com-
binators to define the ferminating fixpoint combinator tfix, as:

O(tfix-, f) = In.fn (t£ix] f)
Ty(tfix,) = (nmat¥ — 7, > 7) - nat* - 7
Thus, the top-level call to the recursive function requires a nat"

parameter n that acts as a starting index, after which, all “recursive”
calls are to combinators with smaller indices, ensuring termination.

Example: Factorial Consider the factorial function:

true — 1 }

fac = An.\f.case .= (n=0) of { _—=nx fln-1)

Let 7 = nat’. We prove termination by typing
O Fp tfix, fac ‘nat' = 7
To understand why, note that
tfix, facn —” facn (tfix; fac)
—"n x (tfix} fac (n — 1))
—*n x (fac (n — 1) (tfix) "' fac))
S*nxn—1x (tfix! ™" fac (n — 2))
—*nxn—1x...x (tfixr fac0)
—*nxn—1x...x (fac0 (tfix, fac))
—'nxn—1x...x1
Soundness of Stratification To formally prove that stratification is
soundly enforced, it suffices to prove that the Denotation Lemmal[T]

holds for AP This, in turn, boils down to proving that each (strati-
fied) constant belongs in its type’s denotation.

Lemma 2. [Constant Typing] Every constant ¢ € [Ty(c)].

The crucial part of the above is proving that the indexed and
terminating fixpoints inhabit their types’ denotations.

Theorem 3. [Fixpoint Typing]
o fix, € [Ty(fix,)],
o Vn.tfix} € [Ty(tfix})],
o tfix, € [Ty(tfix,)].
4.3 Verification With Stratified Types

We can put the pieces together to obtain an algorithmic implication
rule D-IMP instead of the undecidable T-IMP (from Figure [2).
Intuitively, each closing substitution 6 will correspond to a set of
logical assignments (0]). Thus, we will translate I, p1, and p; into
logical formulas (")), (p1]), and (p2|) such that:

® O(p;) —~ trueiff each o € (|0 satisfies (p;[), and

e 0 € [I'] iff each o € (0] satisfies (T).
Translating Refinements & Environments As refinements p are
drawn from the restricted logic, they can be trivially translated into

formulas, i.e. (p) = p. To translate environments, recall that
0 € [I'] iff for each z:7 € T, we have §(x) € [6(7)]. Thus,
(z1:71, . znm)) = (zem) A A (20T
How should we translate a single binding? Since a binding denotes
[{z:B | p}] ={e|ife =" vthenp[v/z] =" true}

a direct translation would require a logical value predicate Val(z),
which we could use to obtain the logical translation

({z:B [ p}) =—Val(z) Vp

This translation poses several theoretical and practical problems
that preclude the use of existing SMT solvers (as detailed in §|[8).
However, our stratification guarantees (cf. (), (9)) that labeled
types reduces to values, and so we can simply conservatively trans-
late the Div and labeled (Wnf, Fin) bindings as:

({:B |p}) = true  ({&:B'|p}) = p

Soundness We prove soundness by showing that the decidable
implication D-IMP approximates the undecidable T-IMP.

Theorem 4. If ' p p1 = pathen '+ p1 = po.

To prove the above, let VC' = (') = (p1|) = (p2)). First,
note that if V(' is u-valid then it is valid as the addition of axioms
preserves validity. Next, we prove that if the VC is valid then
I' = p1 = po. This latter fact relies crucially on a notion of tracking
evaluation which allows us to reduce a closing substitution 6 to a
lifted substitution 8=, written § < 0=, after which we prove:

Lemma 3. [Lifting] 0(e) —* ciff 30 =7 0+ s.t. 6+ (e) =" c.
We combine the Lifting Lemma and the equivalence Theo-
rem to prove that the validity of the VC demonstrates the

evaluation-based implication I" - p; = p2. Finally, the soundness
of algorithmic typing follows from Theorems [9)and I}

Theorem 5. [Soundness of \P ]

e Type-Preservation: If ) -p e : Tthen D e : 7.
e Crash-Freedom: If ) \-p e : T then e /+* crash.

Uninterpreted Validity Checking We reduce the undecidable impli-
cation to checking u-validity of the VC (i.e., validity where mea-
sures are uninterpreted). This trivially implies validity of the VC.
We use u-validity instead of validity to ensure predictable and ef-
ficient checking, as then the VC belongs to QF-EUFLIAD. The
elimination of the measure axioms is crucial for efficient and prac-
tical verification. The absence of the axioms does not lead to loss of
precision in practice; the semantics of the axioms are encoded in the
refinement types of the data constructors, and hence already instan-
tiated inside (the environment and) the VC during type checking.

5. Implementation: LIQUIDHASKELL

We have implemented AP in LIQUIDHASKELL ¢ . Next, we
describe the key steps in the transition from A\ to Haskell.

5.1 Termination

Haskell’s recursive functions of type nat' — 7 are represented,
in GHC’s Core [34] as 1let rec f = An.e which is operationally
equivalentto let f = tfix, (An.\f.e). Given the type of tfix,,
checking that f has type nat% — 7 reduces to checking e in a
termination-weakened environment where

f:{vmat! |[v<n} > 7

Thus, LIQUIDHASKELL proves termination just as AP does: by
checking the body in the above environment, where the recursive
binder is called with nat inputs that are strictly smaller than n.

Default Metric For example, LIQUIDHASKELL proves that

fac n = if n == 0 then 1 else n » fac (n-1)

has type nat? — nat' by typechecking the body of fac in a

termination-weakened environment fac : {vnat* | v < n} — nat!

The recursive call generates the subtyping query:
n{0<n},-(n=0)Fp{v=n—1} {0 <vAv<n}
Which reduces to the valid VC
0<nA=-(n=0)=@w=n—-1)=0<vAv<n)
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proving that fac terminates, in essence because the first parameter
forms a well-founded decreasing metric.

Refinements Enable Termination Consider Euclid’s GCD:

gcd :: a:Nat -> {v:Nat | v < a} -> Nat
gcd a 0 = a
gcd a b = gecd b (a ‘mod" b)

Here, the first parameter is decreasing, but this requires the fact that
the second parameter is smaller than the first and that mod returns
results smaller than its second parameter. Both facts are easily
expressed as refinements, but elude non-extensible checkers [17].

Explicit Termination Metrics The indexed-fixpoint combinator
technique is easily extended to cases where some parameter other
than the first is the well-founded metric. For example, consider:

tfac :: Nat -> n:Nat -> Nat / [n]
tfac x 0 = if n == 0 then x
else tfac (n*x) (n-1)

We specify that the last parameter is decreasing by specifying
an explicit termination metric / [n] in the type signature. Type
checking now checks the body in an environment where the second
argument of t fac is weakened, which is proved as before.
Explicit Termination Expressions Sometimes, none of the param-
eters themselves decrease across recursive calls, but there is some
expression that forms the decreasing metric. For example consider
range lo hi, which returns the list of Ints from 1o to hi:

range :: lo:Nat -> hi:Nat -> [Nat] / [hi-1lo]
range lo hi
lo < hi = lo : range (lo + 1) hi
| otherwise = []

Here, neither parameter is decreasing (indeed, the first one is in-
creasing) but hi-1lo decreases across each call. We generalize the
explicit metric specification to expressions like hi-1lo. LIQUID-
HASKELL desugars the expression into a new nat-valued ghost
parameter whose value is always equal to hi-1o, that is:

range lo hi = go lo hi (hi-1lo)
where
go lo hi ghost
| lo<hi =1 : go (lo+l) hi (hi-(lo+l))
I _ =[]

After which, it proves go terminating, by showing that ghost is a
nat that decreases across each recursive call (as in fac and t fac).

Recursion over Data Types The above strategy generalizes easily
to functions that recurse over (finite) data structures like arrays,
lists, and trees. In these cases, we simply use measures to project
the structure onto nat, thereby reducing the verification to the
previously seen cases. For each user defined type, e.g.

data L [sz] a =N | C a (L a)
we can define a measure

measure sz L a —> Nat
sz (C x xs) =1 + (sz xs)
sz N =0

We prove that map terminates using the type:

map :: (a —> b) -> xs:L a -> L b / [sz xs]
map f (C x xs) = C (f x) (map f xs)
map f N =N

That is, by simply using (sz xs) as the decreasing metric.

Generalized Metrics Over Datatypes Finally, in many functions
there is no single argument whose (measure) provably decreases.
For example, consider:

merge :: XSs:_ —> ys:_ -> _ / [sz xs + sz ys]
merge (C x xs) (C y ys)
| x <y = x ‘C' (merge xs (y ‘CY ys))
| otherwise =y ‘C' (merge (x ‘C‘ xs) ys)

from the homonymous sorting routine. Here, neither parameter
decreases, but the sum of their sizes does. As before LIQUID-
HASKELL desugars the decreasing expression into a ghost param-
eter and thereby proves termination (assuming, of course, that the
inputs were finite lists, i.e. L* a.)

Automation: Default Size Measures Structural recursion on the
first argument is a common pattern in Haskell code. LIQUID-
HASKELL automates termination proofs for this common case,
by allowing users to specify a size measure for each data type, (e.g.
sz for L a). Now, if no termination metric is given, by default
LIQUIDHASKELL assumes that the first argument whose type has
an associated size measure decreases. Thus, in the above, we need
not specify metrics for fac or gcd or map as the size measure is au-
tomatically used to prove termination. This simple heuristic allows
us to automatically prove 67% of recursive functions terminating.

5.2 Non-termination

By default, LIQUIDHASKELL checks that every function is ter-
minating. We show in § [] that this is infact the overwhelmingly
common case in practice. However, annotating a function as lazy
deactivates LIQUIDHASKELL’s termination check (and marks the
result as a Div type). This allows us to check functions that are non-
terminating, and allows LIQUIDHASKELL to prove safety prop-
erties of programs that manipulate infinite data, such as streams,
which arise idiomatically with Haskell’s lazy semantics. For exam-
ple, consider the classic repeat function:

repeat x = x ‘C' repeat x

We cannot use the tfix combinators to represent this kind of recur-
sion, and hence, use the non-terminating £ix combinator instead.

Step 1: Abstract Refinements We can parametrize a datatype with
abstract refinements that relate sub-parts of the structure [37]. For
example, we parameterize the list type as:

data L a <p L a —> Prop>
=N | Ca {v: L<p> a | (p v)}

which parameterizes the list with a refinement p which holds for
each tail of the list, i.e. holds for each of the second arguments to
the C constructor in each sub-list.

Step 2: Measuring Emptiness Now, we can write a measure that
states when a list is empty

measure emp L a -> Prop
emp N = true
emp (C x xs) = false

As described in § ] LIQUIDHASKELL translates the abstract re-
finements and measures into refined types for N and C.

Step 3: Specification & Verification Finally, we can use the abstract
refinements and measures to write a type alias describing a refined
version of L a representing infinite streams:

type Stream a =
{xs: L <{\v -> not(emp v)}> a | not(emp xs)}

We can now type repeat as:

lazy repeat a —> Stream a
repeat x = x ‘C' repeat x

The lazy keyword deactivates termination checking, and marks
the output as a Div type. Even more interestingly, we can prove
safety properties of infinite lists, for example:
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take Nat —-> Stream a -> a
take 0 _ =N

take n (C x xs) = x ‘C"' take (n-1) xs
take _ N = error "never happens"

LIQUIDHASKELL proves, similar to the head example from §
that we never match a N when the input is a Stream.

Finite vs. Infinite Lists Thus, the combination of refinements
and labels allows our stratified type system to specify and ver-
ify whether a list is finite or infinite. Note that: LY a represents
finite lists i.e. those produced using the (inductive) terminating fix-
point combinators, L¥ a represents (potentially) infinite lists which
are guaranteed to reduce to values, i.e. non-diverging computations
that yield finite or infinite lists, and L a represents computations
that may diverge or produce a finite or infinite list.

6. Evaluation

Our goal is to build a practical and effective SMT & refinement
type-based verifier for Haskell. We have shown that lazy evalua-
tion requires the verifier to reason about divergence; we have pro-
posed an approach for implicitly reasoning about divergence by ea-
gerly proving termination, thereby optimizing the precision of the
verifier. Next, we describe an experimental evaluation of our ap-
proach that uses LIQUIDHASKELL to prove termination and func-
tional correctness properties of a suite of widely used Haskell li-
braries totaling more than 10KLOC. Our evaluation seeks to de-
termine whether our approach is suitable for a lazy language (i.e.
do most Haskell functions terminate?), precise enough to capture
the termination reasons (i.e. is LIQUIDHASKELL able to prove that
most functions terminate?), usable without placing an unreason-
ably high burden on the user in the form of explicit termination
annotations, and effective enough to enable the verification of func-
tional correctness properties. For brevity, we omit a description of
the properties other than termination, please see [38]] for details.

Implementation LIQUIDHASKELL takes as input: (1) A Haskell
source file, (2) Refinement type specifications, including refined
datatype definitions, measures, predicate and type aliases, and func-
tion signatures, and (3) Predicate fragments called qualifiers which
are used to infer refinement types using the abstract interpretation
framework of Liquid typing [30]. The verifier returns as output,
SAFE or UNSAFE, depending on whether the code meets the spec-
ifications or not, and, importantly for debugging the code (or spec-
ification!) the inferred types for all sub-expressions.

Benchmarks As benchmarks, we used the following libraries:
GHC.List and Data.List, which together implement many
standard list operations, Data.Set.Splay, which implements
an splay functional set, Data.Map.Base, which implements a
functional map, Vector-Algorithms, which includes a suite
of “imperative” array-based sorting algorithms, Bytestring, a
library for manipulating byte arrays, and Text, a library for high-
performance Unicode text processing. These benchmarks represent
a wide spectrum of idiomatic Haskell codes: the first three are
widely used libraries based on recursive data structures, the fourth
and fifth perform subtle, low-level arithmetic manipulation of array
indices and pointers, and the last is a rich, high-level library with
sophisticated application-specific invariants, well outside the scope
of even Haskell’s expressive type system. Thus, this suite provides a
diverse and challenging test-bed for evaluating LIQUIDHASKELL.

Results Table [1| summarizes our experiments, which covered 39
modules totaling 10,202 non-comment lines of source code. The
results were collected on a machine with an Intel Xeon X5600 and
32GB of RAM (no benchmark required more than 1GB). Timing
data was for runs that performed full verification of safety and
functional correctness properties in addition to termination.

[ Library [ LOC [ Fun Rec Div_ Hint | Time |
GHC.List 310 66 34 5 0 20
Data.List 504 97 50 2 6 32
Data.Map.Base 1395 180 93 0 12 247
Data.Set.Splay 149 35 17 0 7 26
Bytestring 3501 569 154 6 73 549
Text 3125 493 124 7 44 809
Vector-Algorithms 1218 99 31 0 31 196
Total 10202 | 1539 503 20 173 1880

Table 1. A quantitative evaluation of our experiments. LOC is the number of non-
comment lines of source code as reported by sloccount. Fun is the total number of
functions in the library. Rec is the number of recursive functions. Div is the number
of functions marked as potentially non-terminating. Hint is the number of termination
hints, in the form of termination expressions, given to LIQUIDHASKELL. Time is the
time, in seconds, required to run LIQUIDHASKELL.

® Suitable: Our approach of eagerly proving termination is in
fact, highly suitable: of the 503 recursive functions, only 12
functions were actually non-terminating (i.e. non-inductive).
That is, 97.6% of recursive functions are inductively defined.

Precise: Our approach is extremely precise, as refinements pro-
vide auxiliary invariants and extensibility that is crucial for
proving termination. We successfully prove that 96.0% of re-
cursive functions terminate.

Usable: Our approach is highly usable and only places a modest
annotation burden on the user. The default metric, namely the
first parameter with an associated size measure, suffices to
automatically prove 67% of recursive functions terminating.
Thus, only 30% require explicit termination metric, totaling
about 1.7 witnesses (about 1 line each) per 100 lines of code.

Effective: Our approach is extremely effective at improving the
precision of the overall verifier (by allowing the VC to use
facts about binders that provably reduce to values.) Without
the termination optimization, i.e. by only using information for
matched-binders (thus in WHNF), LIQUIDHASKELL reports
1,395 unique functional correctness warnings — about 1 per 7
lines. With termination information, this number goes to zero.

7. Related Work
Next we situate our work with closely related lines of research.

Dependent Types are the basis of many verifiers, or more generally,
proof assistants. In this setting arbitrary terms may appear inside
types, so to prevent logical inconsistencies, and enable the checking
of type equivalence, all terms must terminate. “Full” dependently
typed systems like Coq [6l], Agda [26], and Idris [8] typically
use structural checks where recursion is allowed on sub-terms of
ADTs to ensure that all terms terminate. We differ in that, since the
refinement logic is restricted, we do not require that all functions
terminate, and hence, we can prove properties of possibly diverging
functions like collatz as well as lazy functions like repeat.
Recent languages like Aura [20] and Zombie [10] allow general
recursion, but constrain the logic to a terminating sublanguage, as
we do, to avoid reasoning about divergence in the logic. In contrast
to us, the above systems crucially assume call-by-value semantics
to ensure that binders are bound to values, i.e. cannot diverge.

Refinement Types are a form of dependent types where invariants
are encoded via a combination of types and predicates from a re-
stricted SMT-decidable logic 5,115} 131, 41]]. The restriction makes
it safe to support arbitrary recursion, which has hitherto never been
a problem for refinement types. However, we show that this is be-
cause all the above systems implicitly assume that all free variables
are bound to values, which is only guaranteed under CBV and, as
we have seen, leads to unsoundness under lazy evaluation.
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Tracking Divergent Computations The notion of type stratification
to track potentially diverging computations dates to at least [[11]]
which uses 7 to encode diverging terms, and types fix as (7 —
7) — 7). More recently, [9] tracks diverging computations within
a partiality monad. Unlike the above, we use refinements to obtain
terminating fixpoints (tfix), which let us prove the vast majority
(of sub-expressions) in real world libraries as non-diverging, avoid-
ing the restructuring that would be required by the partiality monad.

Termination Analyses Various authors have proposed techniques
to verify termination of recursive functions, either using the “size-
change principle” [21}32], or by annotating types with size indices
and verifying that the arguments of recursive calls have smaller in-
dices [3} [19]. Our use of refinements to encode terminating fix-
points is most closely related to [40], but this work also crucially
assumes CBV semantics for soundness.

AProVE [17] implements a powerful, fully-automatic termina-
tion analysis for Haskell based on term-rewriting. While we could
use an external analysis like AProVE, we have found that encod-
ing the termination proof via refinements provided advantages that
are crucial in large, real-world code bases. Specifically, refinements
let us (1) prove termination over a subset (not all) of inputs; many
functions (e.g. fac) terminate only on Nat inputs and not all Int
s, (2) encode pre-conditions, post-conditions, and auxiliary invari-
ants that are essential for proving termination, (e.g. gcd), (3) eas-
ily specify non-standard decreasing metrics and prove termination,
(e.g. range). In each case, the code could be (significantly) rewriz-
ten to be amenable to AProVE but this defeats the purpose of an
automatic checker. Finally, none of the above analyses have been
empirically evaluated on large and complex real-world libraries.

Static Contract Checkers like ESCJlava [16] are a classical way
of verifying correctness through assertions and pre- and post-
conditions. Side-effects like modifications of global variables are
a well known issue for static checkers for imperative languages;
the standard approach is to use an effect analysis to determine the
“modifies clause” i.e. the set of globals modified by a procedure.
Similarly, one can view our approach as implicitly computing the
non-termination effects. [42] describes a static contract checker for
Haskell that uses symbolic execution to unroll procedures upto
some fixed depth, yielding weaker “bounded” soundness guar-
antees. Similarly, Zeno [33]] is an automatic Haskell prover that
combines unrolling with heuristics for rewriting and proof-search.
Based on rewriting, it is sound but “Zeno might loop forever” when
faced with non-termination. Finally, the Halo [39] contract checker
encodes Haskell programs into first-order logic by directly mod-
eling the code’s denotational semantics, again, requiring heuristics
for instantiating axioms describing functions’ behavior. Unlike any
of the above, our type-based approach does not rely on heuristics
for unrolling recursive procedures, or instantiating axioms. Instead
we are based on decidable SMT validity checking and abstract in-
terpretation [30] which makes the tool predictable and the overall
workflow scale to the verification of large, real-world code bases.

8. Conclusions & Future Work

Our goal is to use the recent advances in SMT solving to build
automated refinement type-based verifiers for Haskell. In this pa-
per, we have made the following advances towards the goal. First,
we demonstrated how the classical technique for generating VCs
from refinement subtyping queries is unsound under lazy evalu-
ation. Second, we have presented a solution that addresses the un-
soundness by stratifying types into those that are inhabited by terms
that may diverge, those that must reduce to Haskell values, and
those that must reduce to finite values, and have shown how refine-
ment types may themselves be used to soundly verify the stratifica-
tion. Third, we have developed an implementation of our technique

in LIQUIDHASKELL and have evaluated the tool on a large corpus
comprising 10KLOC of widely used Haskell libraries. Our exper-
iments empirically demonstrate the practical effectiveness of our
approach: using refinement types, we were able to prove 96% of
recursive functions as terminating, and to crucially use this infor-
mation to prove a variety of functional correctness properties.

Limitations While our approach is demonstrably effective in prac-
tice, it relies critically on proving termination, which, while inde-
pendently useful, is not wholly satisfying in theory, as adding di-
vergence shouldn’t break a safety proofs. Our system can prove a
program safe, but if the program is modified by making some func-
tions non-deterministically diverge, then, since we rely on termina-
tion, we may no longer be able to prove safety. Thus, in future work,
it would be valuable to explore other ways to reconcile laziness and
refinement typing. We outline some routes and the challenging ob-
stacles along them.

A. Convert Lazy To Eager Evaluation One alternative might be to
translate the program from lazy to eager evaluation, for example, to
replace every (thunk) e with an abstraction A().e, and every use of
a lazy value = with an application z (). After this, we could simply
assume eager evaluation, and so the usual refinement type systems
could be used to verify Haskell. Alas, no. While sound, this transla-
tion doesn’t solve the problem of reasoning about divergence. A de-
pendent function type z:int — {v:int | v > z} would be trans-
formed to z:(() — int) — {v:int | v > x ()} The transformed
type is problematic as it uses arbitrary function applications in the
refinement logic! The type is only sensible if z () provably reduces
to a value, bringing us back to square one.

B. Explicit Reasoning about Divergence Another alternative is to
enrich the refinement logic with a value predicate Val(z) that is
true when “z is a value” and use the SMT solver to explicitly rea-
son about divergence. (Note that Val(z) is equivalent to introducing
a L constant denoting divergence, and writing (z # L).) Unfortu-
nately, this Val(x) predicate takes the VCs outside the scope of the
standard efficiently decidable logics supported by SMT solvers. To
see why, recall the subtyping query (I) from good in § 2] With
explicit value predicates, this subtyping reduces to the VC:

(Val(z) =z > 0)
(Val(y) =y > 0)

To prove the above valid, we require the knowledge that (v = y+1)
implies that y is a value, i.e. that Val(y) holds. This fact, while
obvious to a human reader, is outside the decidable theories of
linear arithmetic of the existing SMT solvers. Thus, existing solvers
would be unable to prove (T0) valid, causing us to reject good.

=>@w=y+1)= (v>0) (10)

Possible Fix: Explicit Reasoning With Axioms? One possible fix
for the above would be to specify a collection of axioms that
characterize how the value predicate behaves with respect to the
other theory operators. For example, we might specify axioms like:

Vz,y,z.(x =y +2z) = (Val(z) A Val(y) A Val(z))
Vz,y.(x <y) = (Val(z) A Val(y))

etc.. However, this is a non-solution for several reasons. First, it
is not clear what a complete set of axioms is. Second, there is the
well known loss of predictable checking that arises when using ax-
ioms, as one must rely on various brittle, syntactic matching and
instantiation heuristics [[14]. It is unclear how well these heuristics
will work with the sophisticated linear programming-based algo-
rithms used to decide arithmetic theories. Thus, proper support for
value predicates could require significant changes to existing deci-
sion procedures, making it impossible to use existing SMT solvers.

Possible Fix: Explicit Reasoning With Types? Another possible fix
would be to encode the behavior of the value predicates within the
refinement types for different operators, after which the predicate
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itself could be treated as an uninterpreted function in the refinement
logic [7]]. For instance, we could type the primitives:

(+) x:Int -> y:Int
-=> {v | v = x + vy && Val x && Val y}
(<) x:Int -> y:Int

> {v | v <=> x <y && Val x && Val y}

While this approach requires no changes to the SMT machinery, it
makes specifications complex and verbose. We cannot just add the
value predicates to the primitives’ specifications. Consider

choose b x y = if b then x+1 else y+2

To reason about the output of choose we must type it as:

choose Bool -> x:Int -> y:Int

=> {v|(v > x && Val x) || (v >y && Val y)}

Thus, the value predicates will pervasively clutter all signatures
with strictness information, making the system unpleasant to use.

Divergence Requires 3-Valued Logic Finally, for either “fix”, the
value predicate poses a model-theoretic problem: what is the mean-
ing of Val(z)? One sensible approach is to extend the universe with
a family of distinct L constants, such that Val(L) is false. These
constants lead inevitably into a three-valued logic (in order to give
meaning to formulas like L = ). Thus, even if we were to find
a way to reason with the value predicate via axioms or types, we
would have to ensure that we properly handled the 3-valued logic
within existing 2-valued SMT solvers.

Future Work Thus, in future work it would be worthwhile to ad-
dress the above technical and usability problems to enable explicit
reasoning with the value predicate. This explicit system would
be more expressive than our stratified approach, e.g. would let
us check let x = collatz 10 in 12 ‘div‘ x+1 by encod-
ing strictness inside the logic. Nevertheless, we suspect such a ver-
ifier would use stratification to eliminate the value predicate in the
common case. At any rate, until these hurdles are crossed, we can
take comfort in stratified refinement types and can just eagerly use
termination to prove safety for lazy languages.
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Constants ¢ == 0,1,—1,... | true,false
| +,—,... |=,<,... | crash
Values v = c¢| Xre| De
Expressions e Llv|xz|ee| letx=ecine

casex =cof {DT — e}

Basic Types B int | bool | T
Label I oa= LU
Types 7 == {wBle} | {v:B'|e} | T =T
Contexts C == e | Ce|cC | DeCe

| casex=Cof {Dy— e}

Figure 5. \U: Syntax

A. Declarative Typing: \U

A.1 Definitions

To simplify the metatheory we extend AU so that
e Supports stratified types, and

e explicitly contains L, a primitive that has any type, but does not
evaluate.

Then, we define the function |e] that erases the refinements in
types and environments:

[{vB' | e}] = B'
|z:7e = 7| = |72] = 7]

0] =0
|z, T | =a:|7], [T]
and variable substitution on types:

({v:B" | €}) ley/y] = {v:B' | e[ey /y]}

(w70 = 7) [ey/y] = w:(72 [ey /y]) = (7 [ey/y])

We extend the typing rules with another rule that types L with
any type getting the rules as defined in Figure[f]

We define the denotations of types by combining the denota-
tions of stratified types:

Definition 1. [Type Denotations]

[{z:B | p}] ={e|0tpeB, ife =" vihenpv/x] —" true}
[{v:B" | p}] =[{v:B|p}]N{e|e=" v}
[{v:B* | p}] = [{v:B* | p}l N {e| e =" d}

[x:me = 7] ={e|Otp e e = 7],Ves € [1a]. e s € [T [ex/7]]}

Finally, we define the constraints that should be satisfied by
constants:

Definition 2. [Constants] For every basic type T there are ex-

actly n = Arity(T) data contractors with result type T, namely

{D%]0 < i < n}.
crash is an untyped constant. For each constant ¢ # crash

1. O+ c: Ty(c) and + Ty(c)

2. If Ty(c) = x:1x — T, then for each v, §(c,v) is defined and if
O b v: 1y thent [c](v) € T[v/x], otherwise [c](v) = crash.

3. IfTy(c) = {v:B' | e}, then c € [Ty(c)] and V', ¢ # c.c’ ¢
[Ty()]

4. If Ty(D7) = x1:T1 — ... Tn:Tn — T, then T; are unrefined
and for every e; with 0 < i < n, such that O+ e : 7
D e € [rei/xi]].

Well-Formed Types
I'v:BFe:bool
' {v:B | e}

I'kr,
'Faxry — 1

WF-BASE

| I o

WEF-FUN

Well-Formed Environments
'r. FT
o Fo— 7,
Tv:bkel = ez
<-BASE
FHA{vb|er} 2 {vd|e2}
k7. <1 T,omib1=7
=<-FuN
ko =177, =7
Implication

V0.0 € [I'] = 6(e1) =~ true = O(e2) —™ true

T-1
I'kel = es M
Typing
T-Bot
F'EL: {v:B | e}
(z,7) €l
————— T-VAR ————— T-CON
'kx:7 I'kc:Ty(c)
'e:7 Tr7 =<7 Tk7 —
I'ke:r
Dxrpbe:r ThE1y
T-FuN
Lk MAze: (v — 7)
ke :(zime—7) Thex:t
T-Aprp
IDkeiex:Tlex/a]
I'keg: s e kFe:r TET
T-LET
I'Fletz=e,ine: T
1¢{J,{} =7isDiv Thre:{vT'|er} TFrT

, Vi.0 < i < Arity(T).(
Ty(D7) = yi:m = -+ = yn:7a — {0:T | er, }
F,W,wi{vrTi ler Ner,} Fe;:T)

- T-CASE
I'kcasex =eof {D77J; > e;i}:T

Figure 6. Type-checking for AV

A.2 Denotational Typing
We define denotational typing as follows:
F'Feer=V00ec[I]=0cec[0T]
Fkm Cre=V0.0 €[] =[0m] C[0 ]

And prove that syntactic typing implies denotational typing, i.e.
a general version of Lemmal[T] of the paper.

Lemma 4. [Denotation Typing]

1. IfTF7m 2 pthenl' -1 C 1o
2 IfTFe:TthenT' Feer.

Proof. Helping Lemma:
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Lemma 5. Ife —* ¢ then e’ € [7] iff e € [7]. e T-CON. Assume I' - e : 7 where e = cand 7 = Ty(c).

Proof Sketch: Since the validity of e € [r] depends on the Then T' - e € 7 holds by Definition[2}
evaluated e, the if direction is evident. The only if direction follows e T-SUB Assume I' - e : 7. By inversion
from the deterministic operational semantics. a Tke:r (1) k7 <7 (2) T'-7(3)
1. Assume I' + 7 < 72. We will prove it by induction on the By IH on (1) we have
derivation tree: Tkeer (4)
e <-BASE. We have
. ) By/[T]on (2)
I'E{v:B |e1} X {v:B" | ez} T Cr(5)
By inversion we get By (4) and (5) we get
TivBFe = e I'Feer
By inversion of T-IMP we have e T-FUN Assume I' - e : 7, where ¢ = Az.¢’ and 7 =

x:7,, — 7'. By inversion we get
Do, e o7 (1) Tk, (2)
By IH on (1) we have
Do e €1 (3)

V0.0 € [I'] = 6(e1) =~ true = O(e2) —™ true (1)
‘We want to prove

Lk {v:B'| e} C{v:B'|es}

Equivalently
. . Equivalently
V0.0 € [I] = [0 {v:B" | e1}] C [0 {v:B" | e2}] , , ,
: ) VO.(0[ex/x]) € [T, w:mp)] = (0[ex/a])(€') € [(0[ex/a])(7)]
Since the labels are the same it suffices to prove that o
r

V0.0 € [T] = {e|Fe: BAO(e1]e/v]) =" true}
C{el|Fe:BAb(exle/v]) =" true}
Since e € [B], we have I', v: B - 6, [e/v]. So, from (1) for

V0.0 € [T] = Vey.ex € [12] = 0(e ex) € [0(7 [ex/2])]

Moreover, -5 e:|7.] — |7]. So,

0 := 0, [e/v] we have V0.0 € [I'].0(e) € [6(7)]
O(e1 [e/v]) =™ true = O(e2 [e/v]) —" true Or,
e <-FUN Assume Iheer
, , o T-APP. Assume I' - e : 7, where e = €1 es and 7 =
'care =721, =7 7’ [e2/x]. By inversion:
By inversion we have T'ke: (i, —7) (1) Thes:7y(2)
| A o771 By IH we get
By IH T'kei€(zm, =7)(3) Tlreser, (4)
PbrmCr (1) Ty brC7 (2) So
We want to show that V0.0 € [T] = Ve, € [0(72)] = (0(e1)) ex € [0(7 [ex/z])] (5)
I'tarm —7C 1’:7'; -7 and
Equivalently V0.0 € [I] = 0(e2) € [0(72)] (6)
V8.0 € [T] = [0 — 7)] C [0 — )] From (5) and (6), we get
Equivalently V0.0 € [[Fﬂ =0ec [[9(7’)]]
V0.0 € [T] Or
= (el e lra] = |r) AVer € [B(r)]-e co € [0(r ex/a])T} et
ejme: [Ty €x z)]- €€z Cx /T
T, T, T, T, e T-LET. Assume I' e : 7, where e = let © = e, in€’.
Clelbe:lm] = [T AVes € [0()]- e e € [0(7 [e/z])]} By inversion:
The above holds, as for any e, e if e; € [0(r;,)] then by T'kep:ms (1) [ e 7 (2) I'7(3)
(1) ex € [0(72)]- Also, by (2) if e e, € [0(7 [ex/x])] then
eex € [0(7 [ex/x])]- By IH we get
2. Assume I' + e : 7. We will prove it by induction on the I'kex €7 (4) Lz e €7 (5)
derivation tree. By (5)
¢ T-VAR Assume I' - e : 7 where e = z. By inversion we ;o . ,
have V0.6 €I,z : 7] = 0'(e) € [6(7)] (6)
(z,7) €T By (4),
We need to show that 0el]=0le/x] €I, : 7] (7)
V0.0 € [I'] = 0(x) € [0(7)] From (6), (7) and (3), we get
Which holds by the definition of well-formed substitutions. V0.0 € [T] = 0(e [ex/z]) € [0(T)]
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By Lemmal5] we get
V6.0 € [I'] = 0(e) € [0(7)]
So,
I'Feer

e T-BoT AssumeI' F e : 7, wheree =1 and 7 = {v:B | p}.
Since L does not evaluate,

V0.0 € [T] = 6(e) € [6(7)]
So,
I'Feer

e T-CASE Assume I' F e : 7, where ¢/ =
e of {D} § — e;}. By inversion

1 ¢{I,1} = risDiv(l) Thre:{vT" |er}(2)
Vi.0 < i < Arity(T){

case *r =

Ty(Dh) = yrimi — - = Yt — {0:T | e, } (4)
D, g, w{vT" | er Aer,} e 7 (5)}
By IH on (2) we get
I'ke e{vT"|er} (6)
We fix a 0 such that § € [I'] We split cases on whether 6(e”)
evaluates to a WNF or not:
=If 6(e’) —" v. By (6), for some i such that 0 < i <
Arity(T), 6(e') —* D% &;.
By IH on (4) and the Definition 2]
I'teilej/yi] [€/x] €T
Finally, by Lemmal[j]
I'Feer

» If6(e’), then by (6) I & {{,}}. Moreover, e diverges so
it trivially belongs to the interpretation of any Div type,
or by (1)

I'Feer
d
We define - I"as - @ and if ' = 7 then + ', = : 7. Now, using
Lemma[d] we prove substitution Lemma:
Lemma 6. [Substitution] If T & e, : 7, and = T, x:7,,, T, then
L IfT 7, T b 11 < 7o then T, [e. /x| T + [es/x]T1 =
lex/x] To.
2. If T, x:7m, TV Fe: 7 thenT, e /x| T F [ex/x] € : [ex /] T.
3. T, x:7y, T & 7 then T, [e. /x] T  [es /7] T
Proof. f '+ e, : 7, and ', :7,,, I I, then
1. Assume
| AT e R
We will prove the lemma by induction on the derivation tree.
e <-BASE Assume I',z:7,,I' F 71 < 7o where 1y =
{v:B'| e1} and 72 = {v:B' | e2}. By inversion
F,x:Tm,F',v :BFel = es
By inversion
v, e,,0' .0 [e,/x] 0" [e/v] € [T, w7, T, v : B]
=0 [e,/z] 0" [e/v] (e1)
<" true = 6 e, /x] 0’ [e/v] (e2) <~ true

Since I' F ey : T, SO
V0,0 e.0 [ex/z] 8 [e/v] € [T, 72, T, v : B]
= 0ea/2]0' [e/v] (e1)
—" true = 0[e, /] 0 [e/v] (e2) =" true
Since I' F €4 : 72, so
V0,0, e.00" [e/v] € [T, [ex/2]T',v : B]
= 00/ [e/v] (e1 [ex /)
—" true = 00 [e/v] (e2 [ex/z]) = true
So,
T [ex/z] T, v: B e [ex/x] = e2[es/x)]

T-r(3) Or

T, [ex/x] T, v: Bty [ex/x] = ta[es /)

e <-FUN Assume I',z:7,,I" = 71 =< 7o, where 1y =
y:Ty — 7 and 72 = y:7,, — 7'. By inversion

| AR o 7’; <7y (1) T,z IV, y:T; Fr=<1'(2)
By IH
L, e /z] T b 7y [ex /2] 2 7y [ex /2]
T, lex/2) T, yiry [ea/2) b 7 lea/x] < 7' [en/2]
By rule <-FUN
T, [ex/z] T = 71 [ex /7] = T2 [€x/7)

2. Assume I',z:7,,I' F e : 7. We will prove the lemma by
induction on the derivation tree.
e T-VAR Assume I', z:7,, I F e :
inversion

T, where e = y. By

(y,7) € T, z:7,, T
Assume
(y,7) el
By rule T-VAR
T [ex/x]T Fe:T
Since F T, = cannot appear in 7 so T [ex/z] = 7. Also,
x #y,s0eles/z] = e. So,
T,[ex/x] T F eles/x] : T [ex /]
Assume
y=zx
By lemma’s assumption
I'tey: Tz
S0
T, [ex/x)T ey :Th
Since z = y, e ez /x] = es. Also, since z ¢ Dom(T) it
cannot appear in 7,50 T [e; /] = T = 7., So,
T,[ex/x] T F eles/x] : T [ex /]
Otherwise, assume
(y,7) €T’
So,
(¥, lea /] 7) € [ex /2] T’
Also, e [e;/x] = e = y. By which and rule T-VAR, we get
T, [ex/z) T I elex/x] : T lex /)]
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e Case T-CON. Assume I', 2:7,, " - e : 7, where e = c and
7= Ty(c). Since e [ex/x] = eand T [ex/z] = T

T, [ex/x] T F eles/x] : T [ex /]
e T-SUB Assume I', z:7,,, I’ I- e : 7. By inversion
Iz, I Fe: 7 (1) Lo, IV F 7 <7(2)
Tz, T -7 (3)
By IH, [T]and[3]
T [ex/z] T F [ex/x] € : [ex/x] T’
T, [ex/z] T F [ex/x] 7" = [ex/z] T
T, [ex/z] T+ [ex/x] T
By rule T-SuB
T, [ex/z) T - elex/x) : T ez /)]

e T-FUN Assume I', z:7,,, I’ F e
T = y:7, — 7'. By inversion

Dor, I yiry e’ o7 (1)
By IH and[3]
T, [ex/x] T, y: [ex/ ] 7'; Flex/x] € : [ex/x] T

T, [ex/z] T I [ex /)] 7'{/

: 7, where e = Ay. and

I 27, I F 7y (2)

By rule T-FUN
I, [ex/z] T F [ex/x] € : [ex/x] T

e T-APP Assume I', z:7,,, I - e
7 = 7’ [e2/y]. By inversion

. 7, where e = e; e and

Do, IV Fertym, — 7' (1)
By IH
T [ex/z] T F [ex/x] €1 : [ex/x] y:T{/ -7

Tz, TV Fep: 7'{/ (2)

I, [ex/z] T F [ex/x] €2 : [ex/2] T;
By rule T-AppP
T, [ex/z) T+ [ex/x] € : [ex/x] T

e T-LET Assume I', z:7,, I’ F e :
ey in €'. By inversion

I, I ey my (1)

T, where e = let y =

o, Iy Fe! 7(2)

I, 2, I =7 (3)
By IH and[3]

Plea/e] T Fey iy (4)  Tlea/al T ymy b e 7(5)

T, [ex/x] T 7 (6)
So,
T, [ex/x] T F [ex/x] € : [ex/x] T
T-CASE This case is similar to T-LET.

T-BoT Assume I',z:7,,I” e : 7, where e =1. By
inversion

| N N
By[3]
[ex/2] T F [ex/x] T
By rule T-BoT
T, [ex/z) T - [ex/x] e : [ex/x] T

3. Assume I', z:7,,, I’ I 7. We will prove it by induction on the
derivation.

e WF-BASE Assume I', z:7,, IV - 7, where 7 = {v:Bl | e}.
By inversion

T, 2:7, '], v:B 5 e:bool
So,
[T, [ex/z] T ],v:B k5 e[es/x] ool
By rule WF-BASE
I, [ex/z] T F {v:B' | e[ex/x]}
Or
T, [ex/z] T - 7 [ex /7]

e WF-FUN Assume I, 2:7,, I - 7, where 7 = y:7;, — 7.
By inversion, we get

27, T F 7 Tz, IV, y:T; F
By IH
T, [ex/z] TV 72 [ex /2]
Due to a-renaming, x # y, SO
T, [ex/z] T+ T?; [ex /] T, [ex/z] TV, y: [ex /] ’7'{/ F 7' [ex/]
By WF-FUN

I, [ea/2] T+ y:i1y [ea/2] — 7' [€x /7]

T, [ex/z] (T, yZT;) F ' lex /]

Or
T, [ex/z] T - 7 [ex /7]

A.3 Soundness

Figuredeﬁnes a BotomLess(e) predicate on expressions:
We prove Preservation and Progress only on expressions that do
not contain L :

Lemma 7 (Preservation). If() I e : 7, BotomLess(e) and e < €’
then O+ €’ : 7.

Proof. Helping Lemmata:
Lemma8. I[fT'Fe:7andb T thenT F 1.

Proof Sketch: By case split on the derivation I' - 7 O
Lemma9. Ife — €' then QO+ 7' /2] < 7[e/x]

Proof Sketch: By case split on the derivation I' + 7[e'/z] <
7 [e/x] O

Assume BotomlLess(e) and ) - e : 7 and e — €’. We will
prove the lemma by induction on the derivation tree.

e Cases T-VAR, T-CoON, T-FUN and T-BOT trivially hold as there
is no e’ for which e < €.
e Case T-SUB. Assume () - e : 7. By inversion

Ote:7 (1) D7 <72 DFT(3)
By IHon (1)
Oreé 7
By which, (2), (3) and T-SUB
OrFe :r

e Case T-LET. Assume @) - e : 7, where e = let = e, in eg.
Then e’ = e [e,/z]. By inversion

OF es:7s (1)
By (1), (2) and Lemmal6]
Dte :7les/x] (4)

T:Tp Feo T (2) OFT(3)
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BotomLess(c)

BotomLess(D &) < /\ BotomLess(e;)

BotomLess(x)

—BotomLess(L)

BotomLess(Az.e) < BotomLess(e)

BotomLess(e1 e2) < BotomLess(e1) A BotomLess(ez)

BotomLess(let = e; in ez) < BotomLess(e1) A BotomLess(ez)

BotomLess(case z = e of {D; T — €;}) < BotomLess(e) A /\ BotomLess(e;)

Figure 7. BotomLess(e)

By (3) z does not appear free in 7, so, 7 [e; /2] = 7 and
Dre' 7
e Case T-APP. Assume
Oe:7(1)

where e = e1 ea, and T = 7’ [ea /7]
By inversion

OFer: (v — 1) (2)

We split cases on the structure of e.
* e = cvo. Then, ¢’ = [¢](v2). By Definition[2]

Oré 7

" ¢ = c ey where e is botomless and not a value, Then, by
(3) and Lemmal[10] e2 < eb, and ¢’ = e1 e5. By IH on (3)

OFeh: s
By which, (2) and rule T-APP we get
Ore 7' [er/a] (4)

Ok es: 1y (3)

By Lemma[9]
07 [6/2/:]3'] =< 7" [e2/x] (5)
By (1) and Lemmalg] since - 0
07" [ea/x] (6)
By (4), (5), (6) and rule T-SUB
Dre' .7

" ¢ = \z. es. Then, €’ = e, [e2/x].
By inversion on (2)

e Foeg T
By which, (3) and Lemmalg] (since - 2:7,)
Dre 7

" e = e ey, where e is botomless and not a value. Then, by
(2) and Lemma([10} e; < ¢} and e’ = ¢/ e2 By IH on (2)

OFel: (zie — 1)
By which, (3) and rule T-APP we get
OFe :r

e Case T-CASE, assume @) - e :
eo of {D; y — e}. By inversion

Dk er:{v:T" |er} (1)
OFT(2)

7, where e = case z =

0 = [yi/zi] (4) z{vT |es Ner, },yiif 7 b ei o 7 (5))
We split cases on the structure of er.

= Assume that ey = D} €, then ' = e; [e/x] [e:/y).
By (5)

;10 Ti,:r:{v:Tl |leeNOer,} Fei:T

By inversionon (1) @ F e; : 7;[e/x] and @ F D2 : {v:T |
er, }e/x]. So, O F ¢; : Ti[y/x][e/y] and O - Di e :
{v:T | er; }y/x][e/y]. And, D F e; € 7;[y/][e/y] and
0+ Dree{vT |er}y/z] [e/y_].

Finally, by Deﬁnition 0 - Dye e {vT | er, A

e ty/] [e/yl.
Then, by Lemma 6]

D¢ :rlei/yi][e/x].
Finally, by (2), 7[e;/y:] [e/z] = T, so
Pre T
* Otherwise, by (1) and Lemma (10| eg <> (. So €' =
casez =¢pof {D; § — e}. ByIHOF e : {v:T | er},
by which and (1) — (6)

Oreé 7
O

Lemma 10 (Progress). If 0 - e : 7, BotomlLess(e) and e # v
then there exists an €' such that BotomLess(e') and e < ¢'.

Proof. Assume @ F e : 7. We will prove the Lemma by induction
on the derivation tree.

e Case T-VAR cannot occur, as I' = ()

e Case T-BOT is trivial, as “BotomLess(e).

e Cases T-CoON and T-FUN are trivial, as e = v.
e Case T-SUB. Assume Q) - e : 7. By inversion

OFe:7
By IH either e = v or there exists an botomless €’ such that
e—¢€.
e Case T-APP. Assume
OEe:7(1)
where e = ey e and 7 = 7’ [e2/z]. By inversion
DEer: (zme —7)(2) Ok ex: s (3)

We split cases on the structure of e.
*c¢ = c vg. Then, ¢ = [c](v2) which is botomless by
Definition of constants.
" ¢ = c es where ez is not a value, By IH on (3) ez < ef
and e = e; €
* ¢ = Az. es. Then, €' = e, [e2/x], which does not contain

Vi,0 < i < Arity(T).(Ty(D%) = 21:71 = ... Zn:Tn — {v:T" | er,} (3) bottom.
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" ¢ = e ea, where e; # v. Then, by IH on (2) e < €} and
e =el es.
e Case T-LET. Assume @) - e : 7, where e = let x = e, in eq,
then €’ = eg [e,/x] which is botomless.
e Case T-CASE. Assume ) - e : 7, where e =
er of {Dr, § — e;}. By inversion,

Tke:{v:T" | }(1)

case r —

We split cases on the structure of er
» If er is a value, then by (1) it is of the form er = Dr,€, so
e = eiler/z][e/y]
= Otherwise, by IH there exists e’y such that er
e =casex =epof {Dr, J — e}

—* e, 50

O

We combine the above to prove Soundness of \V , i.e. Theoremm
in the paper:

Theorem 6. [Soundness of \U JIf0 F e : T and BotomLess(e),
then

e Type-Preservation: If e —* v then () - v:T.
e Crash-Freedom: e +»™ crash.

Proof. 1. Since BotomLess(e) there exists by Lemmaa bottom-
less evaluation sequence

e=e) < e1 ... >...enp =0

The Theorem is proven by n applications of Preservation Lemma.
2.1If e <™ crash, then by Preservation () - crash : 7 which
cannot happen, as crash by definition is an untyped constant. O

B. Tracking Substitutions

Then we define the notion of tracking substitutions. In Figure[§]we
extend the operational semantics with a state o, i.e. a mapping from
variables to expressions that tracks evaluation of its expressions

First we prove that evaluation to a constant exists iff tracking
evaluation to the same constant exists.

Lemma 11. V0, ¢,c,30'.0(e) =" c < (0;e) ~* (0';¢).
Proof Sketch: 'We prove each direction:

e = Given the derivation 6(e) —™ v, we can track the appear-
ances of each expressions 6(x;) and its derivatives and replace
them with x;. Thus, given the initial derivation we can trans-
verse it (left-to-right and post-order); for every tracked appear-
ance we use the appropriate rules that update the stack every
time a tracked expressions evaluates, ie., appears in the left hand
side of a rule; and remove the multiple evaluations of expres-
sions in the stack and construct the evaluation (6; e) ~* (6'; c).
Note that if 0(x;) goes to a value, then 0(z;) = ey —
...ei...e, = v. By the way we transverse the tree, after
the stack is updated to e, and before it is updated to ex41 all
tracked computations for x; are e;, j < k.

If 0(x;) does not go to a value, it cannot appear in the left hand
side of a rule, because evaluation would diverge, thus the stack
is not updated for x;.

When a tracked expression reaches a value, we use the appro-
priate value to substitute (and untrack) the value. Since the re-
sult of the initial evaluation is a constant, then the result of the
tracked computation is the same constant.

<. Given (f;¢e) ~* (0';c) we can construct the derivation
0(e) —* c replacing each query to the stack with the initial
computation of the expression.

O

Then we define a bottomize function e that replaces non-
evaluated expressions with L :

Definition 3. [Bottomize]

DO(y) ifo(z)=Dy
8(z) = v ifo(x) =v# D7
1 otherwise

Using the bottomize function we show that evaluation does not
depend on non-evaluated expressions:

Lemma 12. If (0;¢e) ~* (0';¢c), then §' e —* c.

Proof Sketch: Since (0;e) ~* (0';¢c)(1), then (0;e) ~*
(0'; c)(2): From the evaluation tree (1) we can construct the evalu-
ation tree (2). The trees differ on store related rules.

Say that in (1) the store in x is updated, for an arbitrary x:
((w, €2)0z; ) ~ {(z, e}, )0x; z) Since (1) is finite, it should be that
(0z; ex) ~* (0z;0)(3). Call v, = Dy if v = D€, v otherwise.
Then in (1) there should be a “subtree” with (3) after which the
value of x cannot change in the store. Or 6’(z) = v,. We construct
(2) by removing the “subtree” with (3). After that all rules that
relate store with = will be the same on (1) and (2).

If x is not updated in (1) then x does not appear in the left hand
side of a rule; thus ' (z) = 6(z).

. /
We construct 8" (z) = qi i)ftgegil)ise v

Then (6”; e) ~* (98”;c). If @ (x) is not a value, then it does not
appear in the left hand side of any rule in (2), thus evaluation of e
cannot depend on x.

Then by Lemma 0"(e) —* c. But e = 0"(e), so
0'(e) =" c. O

Also, replacing 1 with any expression yields the same evalua-
tion:

Lemma 13. [ff(e) —~ ¢, then 0(e) —* c.

Proof. Since 0(e) —* c(1), then (8;e) ~* (6';¢c)(2). L expres-
sions in @ are not evaluated, otherwise (2) would get stuck. Thus
they can be instantiated with any expression. 6 provides such an in-
stantiation, thus (6; e) ~* (0”;¢)(3). By Lemmal[l1] 6(e) —" c.
[m]

Finally, we define lifting substitutions
Definition 4. [Lifting Substitutions] 8 <7 0~ = Je, €', 6 (6; €) ~+*
O;YN0F =0

and prove the Lifting Lemma
Lemma 14. [Lifting] 6(e) —* ciff 30 —7% 0 s.t. 0 (e) =~ c.
Proof Sketch: The = direction follows immediately from Lem-

mata% and The < direction follows immediately from Lem-
matalllfand |

C. Constants

We can prove that all the above constants belong to the interpreta-
tions of their types.

Theorem 7. [Constants] c € [Ty(c)].

The Theorem trivially holds for more of the constants. For
example,

=¢ [x:b¥ = y:b¥ = {vibool! | v &z =y}]

*

as Ve, ez, e1 " dy, ez —* dy = (61 =€y &< e = 62) —
true Add.(e1 = e2) —* d

Here we prove that for any type 7, fix, and tfix, satisfy
Theorem 71
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(05e1€2) ~ (075 €] e2)

(o;ce) ~ (o';ce’)

(o;casex =eof {D; J; — e;}) ~
o;Deie€j)~ (0 Deie &)

o1c )~ {o38(c,0)

;A€ €r) ~ (03 € [en/T])

o;let x = ez ine) ~ (o;e[es/x])
o;casex =Djeof {D;yi — e;}) ~

P i

(¢, e2)52) ~ (2, €)' 2)

(3,075 ) ~ {(5,e,)0"5e2)

(2,0)712) ~> (2, )75 0)

(2D 9)i2) ~ (@, D 7)o D)

(2, D @) 2) ~ (2, D §) {3 e0)o D'T)

(0';casex =€’ of {D; yi — e;}) if

(o;¢; [Dj e/z] [e/y;])

if (0;e) ~ (0';¢€l)
if (o;2) ~ (0’5 ex)
ifv#De

if fresh y;

Figure 8. Tracking Substitutions

Given the families of constants:

O(tfix., f) = AnAf.tfixy
S(efix},m) = Af.f m (tfix]" f)

and their types

Ty(tfix,) = (nmat¥ — 7, = 7[n/z]) = mmat® — 7[m/z]

/
Ty(tfix?) = (nmmat¥ — 7, = 7 [n/z]) = ™

we prove that the constants belong to the meanings of their types:
Theorem 8. [Terminating Fixpoint]

1. Vn.tfix} € Ty(tfix7)
2. tfix, € Ty(tfix,)
3. fix, € Ty(£fix,), if the result of T is a Div type.

Proof. e [1| We prove that for all appropriate f and m € [{vnat* |
v < n}], e =tfix} f m € [r [m/z]] by induction on n.
For n = 0, it is trivial, as there is no m such that m €&
[{vinat! | v < 0}].
For the inductive step, e reduces to

n,f

tfix} fm — tfixy! m— fm (t£ix] f)

By IH, since m < n, tfix]* € Ty(tfix]"), so f receives the
appropriate arguments, and returns the appropriate result that
proves the theorem.

e 2l We prove that for all appropriate f and m € [nat'],
tfix, fm € [r[m/x]]. Since m € [{vnat’ | v < m+1}]

tfix? T fom e [r[m/2]]

But operationally, t£ix™ ! f m and tfix, f m behave equiv-
alently, which proves the theorem.

o [3} The prove for fix, € Ty(fix.). is similar. The only dif-
ference is that for the base case £ix® should be defined to be-
long into the interpretation of any type. Thus, it is defined as
a diverging expression and the type of £ix, is constrainted to
7’s with potentially diverging result. With refinement types we
prove that the basic tfix? operator cannot be called, so we
omit the definition of this basic case.

d

D. Algorithmic Typing: \”
Soundness of AP trivially reduces to soundness of implication

checking. Here we give the detailed proof of the Approximation
Theorem:

Theorem 9. [Approximation] IfI' Fp p1 = p2then ' F p1 =
ba.

Proof. To prove the above, let VC = (T|) = (p1]) = (p2)-
First, note that if V(' is u-valid then it is valid as the addition of ax-
ioms preserves validity. Next, we prove that if the VC is valid then
'+ p1 = p2. We fix a 0 for which 6 € [I'] and 0(q1) —™ true
It suffices to prove that (g2) <™ true.

For all (z;, {z;:BY | p;}) € T there exists (z,e;) € 6 and

e; € [{zi:B* | pi}] © ei € [{v:B | pi}] A Jv.e; =" v;

& Jue; =" v = 0(pi [vi/xi]) =7 true A Jve; =7 v,

< 0(p;) =" true

Thus we have that 0 (Api AN ¢1) —" true. By Lemma
0; (Api A qr)) ~* (0% true) Let p = §'; thus, § <% p. By
Lemma. 14 p(A\ pi A q1) —* true. Moreover, by the construction
of p, @ = p(Api A q1) : bool. Thus, by Equivalence Theorem.
Vo € (p)).c = Api A qi. By which and validity of VC Vo €
(p)).o | g2. Using the other direction of Equivalence Theorem
p q2 <" true. Finally, using the other direction of Lemma
0(g2) — true. O

To conclude the proof we prove Equivalence Theorem. Let
#+be a substitution from variables to lifted values. We define the
embedding of the substitution (6 that maps L to arbitrary ele-
ments of the logical domain:

Definition 5.
(o) = {(@1,v1), -, (@n, 00) | Vi € (p(:))}
(L)=D (Do) ={D7v | v € (v)}
(n) = {n} (v) = {cv}, otherwise

Then we prove that given a lifted substitution a predicate goes
to true if and only if for any embedding the predicate holds.

Theorem 10. [Equivalence] If ) - 6 (p) : bool, then

e 0 (p) =" true iff Vo € (0+).0 = p.
o 91 (p) —* false iff Vo € (64 ).0 f p.
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Proof. To begin with we define a comparison between lifted values
and elements of the logical domain:

Definition 6.
1L Cd dCd v C ey

and a function Z, (¢) that given a model o and an (open) logical
term ¢ returns an element in the logic:

Definition 7. [Interpretation]
Ty it —d

Z,(n) =n Z;(ft) = fo (Zot)
T,(D%) =DT,1
I, (x) = o(x) T (t1 ® t2) = Iota Op Tota

We relate the evaluation of logical terms with their interpreta-
tion into the logic:

€L

Lemma 15. If T' F 64(t) : 7, then 6 (t) —=* vt & Vo €
(o) Zo(t) 3 v*
Proof. By induction on the structure of ¢.
et=npn<="nandVo € (p)Zs(n) =n
o t = 2 pla) =" plx) and Vo € () Lo (z) = o(2) 2 p(a)

ot=ft

p(fO =" vh e fpta vt e
Joi.p(t;) —=* v and f(v1) =% vt <
Vo € (p).To(t:) D vt and Vd; vl fp(d) 3ot &£
Vo € (p).3d:Z-(t;) = d; and fD( Ydovt e
Vo € (p).fo(Zs(t:) Jv+ &

Vo € (p).Z,(f 1) D v+
(¥) We can show that for each fp and v

JuiVdi.d; Jvi < fp(d) vt

ie, v;~ contains the least information required by fp to produce
a result less than v>. Now, say

Jo € (p)Vdi T (t:) = di 2 vi

)

Then, by definition of v;", fp(d) 2 v*, which is a contradic-

tion.
et=Dt

p(DT) =" Dol o pt; =" vi" =
Vo € (p).Zo(t:) D vi” < Vo € (p).Z,(DT) I Dot
o t=1t Pto
p(tidt) ="de (pt1) B (pta) =" d &
Hdlp t1 s dy and @dl (p tg) —*de
3d17d2.p t1 sy d1 and p t2 [ doanddy ®pdes =d <

1, d> o € (p) Zo(t1) = dy and Vo € () Lo (t2) = do and dy Bpds = d £43 Vo € (p)3da, da.
=dy and Z,(t2) = d2 and di®pds = d &

Yo € qpl).adl,dz. o’( 1)

Vo € (IpD.Ig(t1 EBtQ) =d
(%) For ¢ = 1,2, fix two instantiations 01,02 € (|p[). Assume
that d;,, # di,,. Then =Vo € (p)Z,(t:) = d = pt; />~
d= -T'tFt; :b¥ = -TFp:bool.

We use the above Lemma to prove the Theorem by induction on
the structure of p.

® p = true:
* p true — true and Wo € (p|).oc = true
" p true & false and IVo € (p|).c |= true
e p = false:
» p false ¥ true and 3o € (|p)).c [~ false
» p false < false and Vo € (p)).c [~ false
*p=-q:
"p (—g) =" true & —(p q) = true & pg ="
false & Vo € (p)).o £ ¢ & Vo € (p).o E q <
Vo € (p).oc Ep
" p (—g) =" false & —(pq) —* false & pgqg <"
true < Vo € (p)).o E q < Vo € (p).o & —q < Vo €
(Do = p
® p=p1Ap2
" p (p1 Ap2) = true & (pp1) A (p p2) =" true &
pp1 =" true and p ps —" true &
Vo € (p)).oc = p1and Vo € (p).o = p2: &
Vo € (p)-(p) | p1 Ap2 & Yo € (p)-(p) Ep
" p (p1 A p2) =" false & (pp1) A (pp2) =" false &
pp1 —" false Vo € (p).c = p
OR = OR
pp2 =" false Vo € (p).o - p2
S Vo € (p).o Epi Ap2 Vo € (p).olEp
® D= tl = tg:
p (t1 = t2) <™ true

*

& (pt1) = (pt2) =" true
= Hdl,dz.p t1 =% dy and =d; (p tg) —* true
=4 3d1,d2.p t1 s d1 and th —* ds
and d1 =D d2
" = 3d1,d2V0’ c (Ipl).Io‘(tl) =dy and Vo € (Ip‘).z-o-(tg) =ds
and d1 =D d2
£ Vo e (p)3di,doTo(tr) =di and T (ta) = da
and d1 =D dg
= VO’G(‘pD.O":tlztg
p (t1 =t2) =™ false
& (pt1) = (pt2) —~ false
(= Edl,dg.p t1 =" dy and =d; (p tz) —* false
=4 E|d1,d2.p t1 o * d1 and th ¥ ds
and d1 ?éD d2
" = E|d1,d2VO’ S (IpD.Ig(h) =d; and Vo € (IpD.IU(tQ) =ds
and d1 ?éD d2
IU (tl) = d1 and Ig (t2) = d2
and d1 #D d2

& Vo e (p).oEt =t
(*) For ¢ = 1,2, fix two instantiations 01,02 € (|p]). Assume
that d;,, # d;,,. Then =Vo € (P)Zo(t:s) = d = pti 7
d=-T'Ft:b"=-TFp:bool
o p=1t; <ta:
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p (t1 < t2) <™ true

proves termination even for mutual recursive functions. Consider

& (pt1) < (pt2) =™ true the mutual recursive functions isEven and is0dd
=4 Hdl.p t1 =" dy and <dy (p tz) —* true )
& 3di,dopty =" ds and pty =" ds {-@ %sEven :: n:Nat -> Bool / [n, 0] @-}
and di <p do {-@ isOdd :: n:Nat -> Bool / [n, 1] @-}
= 3d17d2.v(|p|).1-cr(tl) =d and Vo € (lpD.Ig(tQ) itsg%en 0 = True
' and dy <p da isEven n = is0dd $ n-1
= Hdl,dQ.vU S (IpD.Io-(t1) =d; and Ig(tg) =d>
and di <p d2 isOdd n = not $ isEven n
g Vo € (p)3di,d2.Zo(t1) =d1 and  Z,(t2) = d2 Each call terminates as either isEven calls 1s0dd with a decreas-
and di <p d2  ing argument, or the argument remains the same, and is0dd calls
& Voe(p)oEt <t isEven that should then decrease the argument. We capture this
p (t1 < t2) =™ false reasoning using two lexicographic pairs: each function has its own
& (pt1) < (pt2) —* false metric, and when isEven calls isodd the metric of the caller
& ddipti =" da and <g, (pt2) —{(#alpsshould be greater that callee’s metric (n — 1, 1). Similarly, at
& ddi,dapti =" dy and pta =" d2 isEven’s call-site LIQUIDHASKELL verifies that (n,1) > (n,0).
and di £p da For example, the call isEven m will fire the decreasing metric se-
& 3di,daVo € (p).Zo(t1) =di  and Vo € (p)). Lo (fgyercddm,0) > (m — 1,1) > (m —1,0) > (m —2,1) > ...
- and di £p da that ultimate terminates for any natural number m.
= Eldl,dQVa € (‘PDIG (tl) =d; and Ia-(tz) =d>
and di £p da E.2 Bytestring
é;{ Vo € (p)3di,da.T,(t1) =di and Z,(t2) = do The terms “Haskell” and “pointer arithmetic” rarely occur in the
and di £p do same sentence. Thus, from a verification point of view, the sin-

& Vo e (p).ofEt <t
(%) For ¢ = 1,2, fix two instantiations 01,02 € (|p[). Assume
that d;,, # di,,. Then =Vo € (p)Z,(t:) = d = pt; /"
d=-T'Ft:b"=-TFp:bool
*p=t:
pt—="true < Vo€ (p).Z,(t) = true
& VYoe(p)oEt
& Vo e (p).Zs(t) = false
& Voe(p)olEt

pt =" false

E. Implementation: LIQUIDHASKELL

Here we give some more examples on how we can use LIQUID-
HASKELL. We start by proving termination on mutual recursive
functions, using lexicographical ordering. Then we describe how
we proved functional correctness on two commonly used functions,
namely ByteString and Text.

E.1 Proving Termination

Next, consider the Ackermann function.

ack m n
| m == 0 =n + 1
| n == 0 = ack (m-1) 1
| otherwise = ack (m-1) (ack m (n-1)

There exists no integer termination metric that decreases at each
recursive call. However ack terminates because at each call either
m decreases or m remains the same and n decreases. In other words,
the pair (m, n) strictly decreases according to lexicographic order-
ing. To capture this requirement we extend termination metric from
an integer to a list of integers and at each recursive call we check
that this list is lexicographically decreasing. In the case of ack this
list will simply be the parameters m and n:

ack :: m:Nat -> n:Nat -> Nat / [m,n]

Thus, LIQUIDHASKELL uses lexicographic ordering on a list of
natural numbers to prove termination. Termination metrics could
be generalized to any well-found metric.

Mutual Recursion Equipped with termination metrics LIQUID-
HASKELL instantiates a powerful termination checker that like [40]
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gle most important aspect of the Bytestring library [28], our
first case study, is its pervasive intermingling of high level ab-
stractions like higher-order loops, folds, and fusion, with low-
level pointer manipulations in order to achieve high-performance.
Bytestring is an appealing target for evaluating LIQUID-
HASKELL, as refinement types are an ideal way to statically en-
sure the correctness of the delicate pointer manipulations, errors in
which lie below the scope of dynamic protection.

The library spans 8 files (modules) totaling about 3600 lines.
We used LIQUIDHASKELL to verify the library by giving pre-
cise types describing the sizes of internal pointers and bytestrings.
These types are used in a modular fashion to verify the implementa-
tion of functional correctness properties of higher-level API func-
tions which are built using lower-level internal operations. Next,
we show the key invariants and how LIQUIDHASKELL reasons pre-
cisely about pointer arithmetic and higher-order codes.

Key Invariants A (strict) ByteString is a triple of a payload
pointer, an o f £set into the memory buffer referred to by the pointer
(at which the string actually “begins”) and a 1ength corresponding
to the number of bytes in the string, which is the size of the buffer
after the of £set, that corresponds to the string. We define a measure
for the size of a ForeignPtr’s buffer, and use it to define the key
invariants as a refined datatype

:: ForeignPtr a -> Int
PS

measure fplen
data ByteString =

{ pay :: ForeignPtr Word8
, off {v:Nat | v <= (fplen pay)}
, len {v:Nat | off + v <= (fplen pay)} }

The definition states that the offset is a Nat no bigger than the
size of the payload’s buffer, and that the sum of the offset and
non-negative length is no more than the size of the payload buffer.
Finally, we encode a ByteString’s size as a measure.

measure blen :: ByteString -> Int
bLen (PS p o 1l) =1

Specifications We define a type alias for a ByteString whose
length is the same as that of another, and use the alias to type the
API function copy, which clones ByteStrings.

type ByteStringEg B

= {v:ByteString | (bLen v) = (bLen B)}
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copy b:ByteString -> ByteStringEqg b
copy (PS fp off len)
= unsafeCreate len $ \p —>
withForeignPtr fp $ \f ->

memcpy len p (f ‘plusPtr‘' off)

Pointer Arithmetic The simple body of copy abstracts a fair bit
of internal work. memcpy sz dst src, implemented in C and
accessed via the FFI is a potentially dangerous, low-level operation,
that copies sz bytes starting from an address src info an address
dst. Crucially, for safety, the regions referred to be src and dst
must be larger than sz. We capture this requirement by defining a
type alias Pt rGE a N denoting GHC pointers that refer to a region
bigger than N bytes, and then specifying that the destination and
source buffers for memcpy are large enough.

type PtrN a N = {v:Ptr a| N <= (plen v)}
memcpy sz:CSize —-> dst:PtrN a siz
-> src:PtrN a siz

-> I0 ()

The actual output for copy is created and filled in using the
internal function unsafeCreate which is a wrapper around

1:Nat -> f:(PtrN Word8 1 -> IO ())
-> IO (ByteStringN 1)
create 1 £ = do
fp <- mallocByteString 1
withForeignPtr fp $ \p -> f p

return $! PS fp 0 1

create

The type of £ specifies that the action will only be invoked on
a pointer of length at least 1, which is verified by propagating the
types of mallocByteStringand withForeignPtr. The fact that
the action is only invoked on such pointers is used to ensure that the
value p in the body of copy is of size 1. This, and the ByteString
invariant that the size of the payload fp exceeds the sum of off
and len, ensures that the call to memcpy is safe.

Higher Order Loops mapAccumR combines a map and a foldr
over a ByteString. The function uses non-trivial recursion, and
demonstrates the utility of abstract-interpretation based inference.

mapAccumR f z b

= unSP $ loopDown (mapAccumEFL f) z b

To enable fusion [[12] 1oopDown uses a higher order 1oopWrapper
to iterate over the buffer with a doDownLoop action:

doDownLoop f accO src dest len

= loop len (len-1) (len-1) accO
where
loop (w::Int) s d acc
| s <0
= return (acc :*: d+l :%: len - (d+1)
| otherwise
= do x <- peekByteOff src s
case f acc x of
(acc’ :x: NothingS) ->
loop (w-1l) (s-1) d acc’
(acc’ :x: JustS x’') ->
pokeByteOff dest d x’
>> loop (w-1) (s-1) (d-1) acc’

The above function iterates across the src and dst pointers
from the right (by repeatedly decrementing the offsets s and d
starting at the high 1en down to -1). Low-level reads and writes
are carried out using the potentially dangerous peekByteOff and
pokeByteOff respectively. To ensure safety, we type these low
level operations with refinements stating that they are only invoked
with valid offsets vo into the input buffer p.

type VO P = {v:Nat | v < plen P}
peekByteOff p:Ptr b => VO p -> IO a
pokeByteOff p:Ptr b —> VO p -> a —> I0 ()

22

The function doDownLoop is an internal function. Via abstract
interpretation [30], LIQUIDHASKELL infers that (1) len is less
than the sizes of src and dest, (2) £ (here, mapAccumEFL) al-
ways returns a JustS, so (3) source and destination offsets sat-
isfy 0 < s,d < len, (4) the generated 10 action returns a triple
(acc :x: 0 :x: len), thereby proving the safety of the ac-
cesses in loop and verifying that 1oopDown and the API function
mapAccumR return a Bytestring whose size equals its input’s.

To prove termination, we add a witness w. Though s decreases
at each call, it is nor a Nat as it reaches —1. The system infers that
w decreases and is a Nat as it equals s+1, thus proving termination.

Nested Data Finally, consider group, which splits a string like "
aart" into the list ["aa", "r", "t"], i.e. a list of (a) non-empty
ByteStrings whose (b) total length equals that of the input. To
specify these requirements, we define a measure for the total length
of strings in a list and use it to write an alias for a list of non-empty
strings whose total length equals that of another string:

measure blens [ByteString] -> Int
bLens ([1]) 0
bLens (x:xs) = bLen x + blens xs

type ByteStringNE
= {v:ByteString |
type ByteStringsEqg B
= {v:[ByteStringNE] |

bLen v > 0}
bLens v = bLen b}

LIQUIDHASKELL uses the above to verify that

group b:ByteString -> ByteStringsEq b
group xs
| null xs = []
| otherwise = let x = unsafeHead xs
xs’ = unsafeTail xs
(ys, zs) = spanByte x xs’
in (y ‘cons' ys) group zs

The example illustrates why refinements are critical for proving ter-
mination. LIQUIDHASKELL determines that unsafeTail returns
a smaller ByteString than its input, and that each element re-
turned by spanByte is no bigger than the input, concluding that
zs is smaller than xs, and hence checking the body under the
termination-weakened environment.

To see why the output type holds, let’s look at spanByte, which
splits strings into a pair:

spanByte c ps@(PS x s 1)
= inlinePerformIO $ withForeignPtr x $

\p -> go 1 (p ‘plusPtr‘ s) O
where
go (w::Int) p i
| 1 >=1 = return (ps, empty)

| otherwise = do
c’ <- peekByteOff p i

if ¢ /= ¢’
then let bl = unsafeTake 1 ps
b2 = unsafeDrop 1 ps
in return (bl, b2)
else go (w-1) p (i+1)

Via inference, LIQUIDHASKELL verifies the safety of the pointer
accesses, and determines that the sum of the lengths of the output
pair of BytesStrings equals that of the input ps. Termination
follows by inferring that the sum of the witness w and i equals
1.

E.3 Text

The standard Haskell string type is implemented as a list of char-
acters, which makes it easy to reason about but is bad for perfor-
mance. For serious text-processing Haskellers switch to the Text
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library, which uses byte arrays and stream fusion to guarantee per-
formance while providing the high-level APL

In our evaluation of LIQUIDHASKELL on Text [27], we fo-
cused on two types of properties: (1) the safety of array index and
write operations, and (2) the functional correctness of the top-level
API. These are both made more interesting by the fact that Text
internally encodes characters using UTF-16, in which characters
are stored in either two or four bytes. While we have verified ex-
act functional correctness size properties for the top-level API, we
focus here on the low-level functions and interaction with unicode.

Arrays and Texts A Text consists of an (immutable) array of
16-bit words, an of fset into the array, and a length describing
the number of Word16s in the Text. The Array is created and
filled using uses a mutable MArray. All write operations in Text
are performed on MArrays in the ST Monad, but they are frozen
into Arrays before being used by the Text constructor. We write a
measure denoting the size of an MArray and use it to type the write
and freeze operations

measure malen MArray s —-> Int
predicate Egqlen A MA = alen A = malen MA
predicate Ok I A =0 <= I < malen A
type VO A = {v:Int| Ok v A}
unsafeWrite m:MArray s

-> VO m -> Wordl6 -> ST s ()
unsafeFreeze m:MArray s

-> ST s {v:Array | EglLen v m}

Reasoning about Unicode The function writeChar — originally
Data.Text.UnsafeChar.unsafeWrite — writes a Char into an
MArray. Text uses UTF-16 to represent characters internally,
meaning that every Char will be encoded using two or four bytes
(one or two Word16s).

writeChar marr i c
| n < 0x10000 = do
unsafeWrite marr i
return 1
| otherwise = do
unsafeWrite marr i lo
unsafeWrite marr (i+1)
return 2
where n = ord ¢
n - 0x10000
fromIntegral
(m ‘shiftR®
fromIntegral
(m .&. Ox3FF)

(fromIntegral n)

hi

m =
lo
10) + 0xD800

hi

v el

+ 0xDCOO0

The UTF encoding makes the specification of the function rather
interesting. Due to the encoding of Chars we cannot just require
i to be less than the length of marr; if i were malen marr - 1
and c required two Word16s, we would perform an out-of-bounds
write. To account for this subtlety, we define a Room predicate to
ensure that the encoding of c is taken into account.

Char -> Int

N <= 2 & Ok (I+N-1) A
if ord C < 0x10000
then OkN I A 1

else OkN I A 2

measure ord HH
predicate OkN I A N =
predicate Room I A C =

Room i marr c canbe read as “if c is encoded using one Word16
, then i must be less than malen marr - 1, otherwise i must be
less than malen marr - 2.” Equipped with the above, we define
two useful aliases for the specification

type OkSiz I A =
type OkChr I A =

{v:Nat |
{v:Char

OkN I A v}
| Room I A v}

writeChar marr:MArray s

-> i:Nat

-> OkChr i marr

-> ST s (0OkSiz i marr)

Bug The burden of proving write safety lies with clients of
writeChar. Using LIQUIDHASKELL we found an error in one
client, mapAccumL, which combines a map and a fold over a
Stream, and stores the result of the map in a Text.

mapAccumL f z0 (Stream next0 sO len) =
(nz, Text na 0 nl)

where
mlen = upperBound 4 len
(na, (nz,nl)) = runST $ do

(marr, x) <- (new mlen >>= \arr ->
outer arr mlen z0 sO0 0)
arr <- unsafeFreeze marr
return (arr,x)
outer arr top = loop

where
loop !z s !i =
case next0 s of

Done -> return (arr, (z,1))
Skip s’ -> loop z s’ 1
Yield x s’
| 3 >= top -> do
let top’ = (top + 1) ‘shiftL‘' 1
arr’ <- new top’
copyM arr’ 0 arr 0 top
outer arr’ top’ z s i
| otherwise —-> do
let (z’',c) = f z x
d <- writeChar arr i c
loop z’ s’ (i+d)
where j | ord x < 0x10000 = i
| otherwise =1+ 1

Let’s focus on the Yield x s’ case. We first compute the maxi-
mum index j to which we will write and determine the safety of
a write. If it is safe to write to j we call the provided function
f on the accumulator z and the character x, and write the result-
ing character c into the array. We know nothing about ¢ though,
specifically whether ¢ will be stored as one or two Word16s, SO
LIQUIDHASKELL flags the call to writeChar as unsafe.

To illustrate why the call is in fact buggy, consider a sam-
ple iteration of loop where i = malen arr - 1 and ord x
< 0x10000. In this case j will equal i and we will enter the
otherwise branch. Next, suppose £ z x returns a c such that
ord ¢ >= 0x10000. The action writeChar arr i c will write
to indices i and i+1 of arr, but i+1 = malen arr and is not a
valid index for writing!

The error lies dormant till the next loop iteration, when i
= malen arr + 1 and we trigger the j >= top branch. Here,
we allocate a larger array and copy the contents of the previous
array into the new array. The copyM arr’ 0 arr 0 top call
only copies top elements, i.e. it does not copy the element at
top, losing a Word16 and so yielding the wrong output. We have
reported the error to the authors of the library.
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