
Refinement Types For Haskell

Niki Vazou,
Eric Seidel,
Ranjit Jhala

(UC San Diego)
!

Dimitrios Vytiniotis,
Simon Peyton-Jones

(Microsoft)

Refinement Types
!

{v:Int | v > 0}	

Haskell Type Predicate*

* From Logical Sub-language

Refinement Types
!

div :: Int -> {v:Int | v > 0} -> Int	

Haskell Type Predicate*

* From Logical Sub-language

Refinement Types
!

div :: Int -> {v| v > 0} -> Int	

Abbreviated

Using Refinement Types
!

 div :: Int -> {v|v>0} -> Int	
!

!

!

Using Refinement Types
!

 div :: Int -> {v|v>0} -> Int	
!

 good x = let y = 10	
 in x `div` y	

OK

Using Refinement Types
!

 div :: Int -> {v|v>0} -> Int	
!

 bad x = let y = 0	
 in x `div` y	

Error

Refinement Types for
Array Safety in ML

Compiler Correctness in F*

Security Protocols in F#

How about Haskell?

CBV

CBN

…

A Curious Function…

!

 spin :: Int -> Int	
!

 spin x = spin x	

A Curious Function…

!

 spin :: Int -> {v|false}	
!

 spin x = spin x	

OK
As spin does not return any value

Using Refinement Types
!
 div :: Int -> {v|v>0} -> Int	
 spin :: Int -> {v|false}	
!

 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

OK? or Error?

Using Refinement Types

OK under CBV evaluation

!
 div :: Int -> {v|v>0} -> Int	
 spin :: Int -> {v|false}	
!

 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

Using Refinement Types

Error under CBN evaluation

!
 div :: Int -> {v|v>0} -> Int	
 spin :: Int -> {v|false}	
!

 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

CBV-style typing is unsound under CBN!

The Problem

Reports Erroneous code as OK

1 Motivation
How to refine types under CBN ?

Refinement Typing 101

Code Refinement Type Checker
OK

Error

Refinement Typing 101

Code Logic SMTTyping
OK

Error

Refinement Typing 101

Code Logic SMTTyping
OK

Error

1. Source Code to Typing constraints

2. Typing Constraints to Logical VC

3. Check VC validity with SMT Solver

Code Logic SMTTyping
OK

Error

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

Typing Logic

Encode Subtyping as Logical VC

If VC valid then Subtyping holds

Typing Logic

Encode Subtyping as Logical VC

 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

y:{v|p} {v|p} <: {v|q}

Typing Logic

y:{v|p}

Means*:If y reduces to a value then p[y/v]

Encoded as: “y has a value” => p[y/v]

* Flanagan “Hybrid Type Checking” POPL ’06

Typing Logic

Means: if y:{v|p} then y:{v|q}

Encoded as: p => q

{v|p} <: {v|q}

Typing Logic

Encode Subtyping …
 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

… as Logical VC
 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

Typing Logic

Encode Subtyping …
 x:{v|true }	
 y:{v|v=0 } |- {v|v=0} <: {v|v>0}	
 z:{v|false}

… as Logical VC
 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

Logic SMT

How to encode “has a value” in VC?

CBV: Binders must be values!
!

x, y, and z are trivially values

How to encode “has a value” in VC?

 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

!

/\	
/\

How to encode “has a value” in VC?

CBV: Binders must be values!
!

x, y, and z are trivially values

 “x has a value” => true	
/\ “y has a value” => y=0 =>v=0 => v>0	
/\ “z has a value” => false

CBV: Binders must be values!
!

x, y, and z are trivially values

Logic SMT
Valid

!

/\	
/\

OKOK

!
 div :: Int -> {v|v > 0} -> Int	
 spin :: Int -> {v|false}	
!
 ugly x = let y = 0	
 z = spin 0	
 in x `div` y	

Code Logic SMTTyping
OK

CBV: Checker soundly reports OK

CBN: Binders may not be values

How to encode “x has a value” in CBN ?

1 Motivation!
How to refine types under CBN ?

2 Refinement Typing 101!
 How to encode “x has a value” in CBN ?

1. Ignore environment
2. Transform CBN to CBV
3. Encode as logical predicate

 “x has a value” => px	
/\ “y has a value” => py => p1 => p2	
/\ “z has a value” => pz

How to encode “x has a value” in CBN ?

1. Ignore environment
2. Transform CBN to CBV
3. Encode as logical predicate

 “x has a value” => px	
/\ “y has a value” => py => p1 => p2	
/\ “z has a value” => pz

Non-solutions (see paper)

How to encode “x has a value” in CBN ?

Observation:!
!

Most expressions provably reduce to a value

How to encode “x has a value” in CBN ?

If x reduces to a value,
then encode “x has a value” by true.

Observation:!
!

Most expressions provably reduce to a value

How to encode “x has a value” in CBN ?

x:{v:Int|p}

“x has a value” => p[x/v]

If x reduces to a value,
then encode “x has a value” by true.

Means:“If x reduces to a value then p[x/v]”

Encoded as:

x:{v:Int"|p}

Encoded as:

Label

and x reduces to a value”
“If x reduces to a value then p[x/v]

p[x/v]

If x reduces to a value,
then encode “x has a value” by true.

Means:

Stratified Types

x:{v:Int"|p}
Must reduce to a Value

x:{v:Int"|p}
May-not reduce to a Value

x:{v:Int"|p}

x:{v:Int"|p}

 to Logic

encoded as p[x/v]

encoded as true

Stratified Types

Code Typing
!
 div :: Int -> {v|v > 0} -> Int	!
 succ :: x:Int -> {v|v>x}	!
 ok n = let x = 1	
 y = succ x	
 in n `div` y	

 n:{v:Int|true}	
 x:{v:Int"|v=1} |- {v|v>x}<:{v|v>0}	
 y:{v:Int|v>x }

x is a value

Typing Logic

 true	
/\ x=1 => v>x => v>0	
/\ true

 n:{v:Int|true}	
 x:{v:Int"|v=1} |- {v|v>x}<:{v|v>0}	
 y:{v:Int|v>x }

Logic SMT

 true	
/\ x=1 => v>x => v>0	
/\ true

Valid

Code Logic SMTTyping
OK

!
 div :: Int -> {v|v > 0} -> Int	!
 succ :: x:Int -> {v|v>x}	!
 ok n = let x = 1	
 y = succ x	
 in n `div` y	 x is a value

1 Motivation!
How to refine types under CBN ?
2 Refinements 101!

3 Stratification
How to enforce stratification ?

How to encode “x has a value” in CBN ?

Terminating expressions must have a value

Solution: Use termination analysis

How to enforce stratification ?

x:{v:Int"|p}
Must have a Value

How to Verify Termination?

Check termination with Refinement Types

!

 f :: n:{v:Int"|0<=v} -> {v:Int"|v=1}	
 f n = if n == 0 then 1 else f (n - 1)	

 (f n) has a value, if f
Recurses on smaller inputs with a lower bound

Check termination with Refinement Types

Recurses on smaller inputs with a lower bound

!

 f :: n:{v:Int"|0<=v} -> {v:Int"|v=1}	
 f n = if n == 0 then 1 else f (n - 1)	

Recurses on inputs v s.t. v < n and 0 <= v

Check termination with Refinement Types

!

 f :: n:{v:Int"|0<=v} -> {v:Int"|v=1}	
 f n = if n == 0 then 1 else f (n - 1)	

Recurses on inputs v s.t. v < n and 0 <= v

{v:Int"|0<=v /\ v<n}

Check termination with Refinement Types

Recurses on inputs v:

!

 f :: n:{v:Int"|0<=v} -> {v:Int"|v=1}	
 f n = if n == 0 then 1 else f (n - 1)	

 f :: {v:Int"|0<=v /\ v<n} -> {v:Int"|v=1}

 OK: Verifies (f n) has a value

Check termination with Refinement Types

Just check f’s recursive calls with type

{v:Int"|0<=v /\ v<n}

We proved Greater Common Divisor terminates,
using properties of mod.

We cannot always prove termination

Check termination with Refinement Types

Termination Proofs are Semantic

!
 div :: Int -> {v|v>0} -> Int	!
 collatz :: Int -> {v|v=1}	
!
 ok1 n = let y = collatz n in	
 42 `div` y	

y::{v|v=1}

We cannot always prove termination

Cannot verify collatz terminates…

Termination is a Luxury not Necessity

We can check “non-terminating” code

1 Motivation!
How to refine types under CBN ?

3 Stratification!
How to enforce labels ?

4 Termination
How is termination in practice?

2 Refinements 101!
How to encode “x has a value” in CBN ?

LiquidHaskell
Refinement Type Checker for Haskell

How is termination in practice?

See Eric’s HS Talk Tomorrow!

Data.Set.Splay
GHC.List

Data.List
Vector-Algorithms

Data.Map.Base
Text

Bytestring

Recursive Functions
0 40 80 120 160

Auto Annot Unchecked

How is termination in practice?

How is termination in practice?

Precise!

96% recursive functions proved terminating

TOTAL

Recursive Functions
0 150 300 450 600

Automatic Annot Unchecked

TOTAL

Recursive Functions
0 150 300 450 600

Automatic Annot Unchecked

How is termination in practice?

Automatic!

61% functions proved automatically

1 Motivation!
How to refine types under CBN ?

3 Stratification!
How to enforce labels ?

4 Termination!
Is termination practical ?

5 Evaluation

Yes.

2 Refinements 101!
How to encode “x has a value” in CBN ?

In The Paper!

• Formalism & Soundness
• Stratified Algebraic Data Types
• Encode Infinite Data
• More Termination Proofs

Problem

Solution

Evaluation

Under CBN, Refinement Types “need” termination.

Prove termination using Refinement Types…

Which is highly effective in practice.

Refinement Types for Haskell

Thank you!

END

