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Abstract

The Android OS conserves battery life by aggressively
turning off components, such as screen and GPS, while al-
lowing application developers to explicitly prevent part of
this behavior using the WakeLock API. Unfortunately, the
inherent complexity of the Android programming model
and developer errors often lead to improper use of Wake-
Locks that manifests as no-sleep bugs. To mitigate this
problem, we have implemented a tool that verifies the
absence of this kind of energy bugs w.r.t. a set of Wake-
Lock specific policies using a precise, inter-procedural
data flow analysis framework to enforce them. We run
our analysis on 328 Android apps that utilize WakeLocks,
verify 145 of them and shed light on the locking patterns
employed and when these can be harmful. Further, we
identify challenges that remain in order to make verifica-
tion of Android apps even more precise.

1 Introduction

Smartphones have become pervasive over the last few
years by incorporating features like multiple cores, digital
cameras, GPS location tracking and large screens. To
deal with resource management in the presence of these
features, smartphone OSes are designed to aggressively
put them to sleep as soon as they become “idle”, while
at the same time they allow developers to specify compo-
nents they need to be kept awake. In particular, Android’s
WakeLock API enables developers to provide explicit
resource management directives to the OS; acquiring a
WakeLock object ensures that the device is on at the level
specified at its creation [1].

WakeLocks provide a flexible and fine-grained resource
management mechanism, but as they transfer the burden
of their release to the developer, they have rendered apps
prone to the so-called “no-sleep” bug, i.e. the situation
where a resource (e.g. the screen, or the CPU) is kept
awake indefinitely due to a misuse of the power control

API [15, 17]. These bugs are particularly hard to detect
since they do not lead to crashes or malfunctions, but
rather reduce the device’s battery life.

Pathak et al. [16] delineate the domain of no-sleep
bugs in smartphone apps, characterize them completely
and present the first compile-time technique for detecting
them, based on the reaching definitions dataflow algo-
rithm. Their tool reveals bugs in 44 out of the 86 tested
apps, and provides a great first exploration of static analy-
sis for no-sleep energy bugs.

In this paper, we further inspect this area by develop-
ing a new tool that verifies the absence of no-sleep bugs
w.r.t. a set of policies. In doing so we make three contri-
butions. First, we have studied the lifecycle of different
kinds of components in Android applications, and use
this information to precisely define a set of resource man-
agement policies specifying the correct usage of wake
locks. Second, compared to prior work we apply more
precise analysis techniques for handling asynchronous
calls, which are ubiquitous in Android. Third, to evaluate
our techniques we run our tool on 328 real world Android
applications and verify that 145 of those are exempt from
the specific kind of no-sleep bug (w.r.t. our policies). By
analyzing warnings in the remaining applications we find
energy bugs in several of them, and identify the important
remaining challenges that must be addressed in order to
precisely track energy usage in Android apps.

Related Work. Static analysis of Android applications
is not new. Felt et al. [10] study Android apps to deter-
mine if developers follow least privilege with permission
requests, and Chin et al. [8] provide a tool that detects vul-
nerabilities in the communication between apps. Security
and privacy violations have also been studied [9, 11, 12].
Attempts to provide generic frameworks for app analysis
include Ded [9], which is included in our tool’s work-
flow, re-targets dalvik bytecode to Java bytecode, and
Dexpler [7], that converts dalvik to Jimple, an interme-
diate representation used by Soot [5]. Eprof [17], a fine
grained energy profiler for smartphone apps, revealed that



a considerable amount of energy is spent on third-party
advertisement modules. Carat [14] detects and provides
energy related recommendations, by collecting data from
a community of devices. Pathak et al. [15, 16] investigate
the pervasiveness of no-sleep bugs and present a tool that
uses reaching definitions analysis to detect them.

2 Background

We start off with a brief description of Android’s mecha-
nism for power management and software components.
Power Management. To enable application-level power
management, the OS allows applications to create, acquire
and release WakeLock objects. A WakeLock is associated
with a particular resource (CPU, screen, etc.), and when
held prevents it from going into “sleep” mode. Thus, a de-
veloper can control the power state of the device by using
the PowerManager class to create a lock on the relevant
resource, acquire the lock while performing some critical
task during which the device must stay on (e.g. while
receiving updates from a remote server) and then release
the lock after it is finished. However, failure to release the
locks in a timely fashion can lead to the device being kept
on needlessly, thereby wasting power. Android also has
a timed acquire method, which allows the developer to
specify a timeout after which the resource will be released
automatically, but it is common for applications to eschew
this mechanism in favor of manual management 1.
Application Components. An Android app is built from
a set of components. These components are associated
with a lifecycle whose stages correspond to the various
parts of their functionality. The developer specifies the
actions to be performed at each stage in the lifecycle by
implementing a set of callback methods. There are four
main kinds of components (outlined below), however, for
the rest of this paper we are going to consider all appli-
cation building blocks that execute in their own context,
including Runnable objects, as components.
Activities provide the UI screen of an app. They form
a stack, whose head is the currently running activity (in
the foreground of the screen). An activity that is not
in foreground, but still visible, is paused, and an activ-
ity in the background is stopped. Entry and exit from
the running state is done by executing the onResume

and onPause callbacks respectively, the paused state
by executing onStart and onStop, and the entire ac-
tivity’s lifecycle is bounded by calls to onCreate and
onDestroy. When a stopped activity is being restarted
then the onRestart callback is called.
Services perform long-running operations without user
interaction. A service can be started by calling

1Uses of timed acquired wake locks are considered exempt from the
no-sleep bug and are therefore not included in our analysis.

startService, or bound upon by calling bindService,
to offer a client-service interface to any interacting compo-
nent. In either case, the service is set up during onCreate.
onStartCommand is executed when a service is started
by another component, and in the case of a bound ser-
vice onBind and onUnbind will be called when the first
and last client binds and disconnects from it, respectively.
IntentService is a special type of service that han-
dles asynchronous requests on demand, by spawning a
separate worker thread and using it to carry out a task.
Thus, at the end of onStartCommand, onUnbind, and
onHandleIntent callbacks, the respective task should
be completed and hence no wakelocks should be held.

BroadcastReceivers respond to system-wide broadcast
announcements, from within the system (e.g. low battery),
or from applications (e.g. to alert other apps that an event
has occurred). A broadcast receiver begins and ends its
work within the onReceive callback and hence, must not
hold any wake locks at the end of this method.

ContentProviders provide the means to encapsulate and
protect a structured set of data. Here, each exposed call-
back is typically a unit of work, and hence, all locks must
be released by the end of the callback.

Intent-based Component Communication. Compo-
nents can communicate via asynchronous messages called
Intents, which offer a late run-time binding between com-
ponents of the same or different apps. Intents can be
explicit, i.e. targeted towards a component specified by
its name, or implicit, i.e. not specifying a target, but
an action to be performed. Precise accounting of inter-
component communication is useful, as it is common for
wake locks to be acquired within one component, and
released within another component that is asynchronously
invoked through an intent. The same holds regarding
Runnable objects that can be explicitly spawned as threads
or associated with a thread’s MessageQueue.

3 Our Approach

To ensure that an app behaves well w.r.t. energy consump-
tion we have developed a tool that statically verifies its
compliance with a set of energy policies. In particular, our
goal is to prove the absence of cases where there exists a
path along which a wakelock is acquired but not released
at the appropriate point in a component’s lifecycle. To do
this we first define a set of policies 3.1 and then we show
how our analysis enforces them 3.2.

3.1 Policies

Energy States. No-sleep energy bugs arise when certain
software components hold on to wake locks for an indefi-
nite amount of time thereby forcing system resources to



Component Type Exit Point Callbacks
Activity onPause

Service (Bound) onUnbind

Service (Started) onStartCommand

IntentService onHandleIntent

BroadcastReceiver onReceive

Runnable run

TABLE 1: Main Locking Policies

remain awake and prevents them from descending to an
idle state. Formally, we say a component is in a high (resp.
low) energy state if it is (resp. is not) holding any wake
locks at that point. Intuitively, our policies specify that at
key exit points, where the component has finished doing
work, the software component must be in a low energy
state (i.e. must have released all wake locks.)
Exit Points. The behavior of an Android component
is realized by a set of callbacks, which are invoked ac-
cording to a lifecycle protocol that determines when the
component is being setup, active, and shut down. Thus, to
concretely specify the energy policy for a component, we
need to map the callbacks to the phases in the lifecycle,
in particular, to identify the callbacks at the end of which
the component must be in a low energy state.
Component Policies. To identify the exit points, we par-
tition components into categories, for each of which we
have identified the callbacks whose exits must be in low-
energy states. The categories and callbacks are summa-
rized in Table 1. Note that components lacking a well-
defined lifecycle, or not hard-coded in our analysis, are
treated conservatively by requiring all of their callbacks
to end in a low-energy state.
Asynchrony. Asynchronous transfer of control flow is
ubiquitous in Android software. In particular, a com-
mon pattern (that was empirically established) is that of a
component acquiring a wake lock on a resource and then
asynchronously calling another component (e.g. through
the intent mechanism), thereby implicitly delegating the
responsibility of releasing this WakeLock to the latter.
In these situations, the original component is in a high-
energy state, but the program is energy-safe as long as the
asynchronously invoked component releases the Wake-
Lock by the time it reaches its exit point. However, note
that if the triggered component does not operate on the
WakeLock at all, then responsibility for releasing it re-
mains with the original calling component.

3.2 Verification
We employ flow- and context- sensitive inter-procedural
dataflow analysis [18] to verify that components adhere
to their energy policies. Next, we describe how we track
the energy state via dataflow facts, how we statically prop-
agate the flow-facts via abstract transfer functions, and

our inter-procedural framework for precisely analyzing
synchronous and asynchronous method calls.

Dataflow Facts. Our analysis statically tracks the energy
state at each program point via dataflow facts that rep-
resent the set of WakeLock instances that are held (i.e.
acquired by the program) at that point. The program is in
a low-energy state iff the lockset is empty.

Inter-procedural Control Flow Graphs (ICFG). We
use a dataflow analysis to compute the lockset at each pro-
gram point, and hence, identify the set of points where the
program is in a high energy state. Our analysis represents
the program with an inter-procedural CFG whose vertices
are program points and edges are program instructions.
Each method has a distinguished entry and exit vertex.
Regular method calls are modeled by call- and return-
edges between the call-site and the entry and exit points.
As discussed earlier, we have found that verification re-
quires precise modelling of the application lifecycle and
analysis of asynchronous calls that delegate lock-release
responsibilities. We carry out several auxiliary analyses
to extract this information and reflect it in the ICFG.

Asynchronous Calls. Asynchronous calls are triggered
by intents and thread spawning. To identify the targets of
these calls – namely the component that will be executed
or the target of a Runnable call or post – we use a standard
intra-procedural def-use analysis, in which we track the
definition sites of the parameters that are passed to the
asynchronous call instruction to infer the target compo-
nent. We only handle explicit intents in which a single
target component is specified. Note that failure to resolve
an asynchronous call, even at a high-energy state, leads to
imprecision (not unsoundness) as in this case, the verifier
will raise a warning if it was the (undetermined) target
that released the WakeLock on the caller’s behalf. Further-
more, the application can still be verified if the WakeLock
is released later by the calling component itself.

Lifecycles. Recall that each component’s callbacks are
invoked according to a lifecycle protocol which specifies
the order in which the callbacks may be invoked. The
protocol is represented by a state machine whose vertices
are the callbacks and edges denote the successor callback.
To model the notion of a component’s lifecycle, the exit
ICFG node of a callback method is connected to every
entry CFG node of each of its successor method in the
component’s lifecycle. These additions allow us to op-
erate on a single CFG that encompasses the notion of
an application’s lifecycle and which also captures asyn-
chronous inter-component communication.

Dataflow Analysis. After building the ICFG, we use
the inter-procedural analysis [18] module of the WALA
framework [6] to compute the lockset at each program
point. We provide a transfer function to propagate flow
facts across the edges of the ICFG: lock facts are gen-



Component Callback #Violating apps

Activity onPause 100
onStop 90

BcastRcvr onReceive 53

Service
onStart 16
onUnbind 28
onHandleIntent 3

Runnable run 30
AsyncTask onPostExecute 5
other any 43

TABLE 2: Violation report after examining 328 apps.

erated at WakeLock.acquire sites, they are propagated
unchanged across normal edges, and killed at calls to
WakeLock.release. Facts are propagated at return
edges in the usual inter-procedural manner. At a join
point, the set of locks held is the union of the locks at the
predecessor points. At asynchronous calls and returns, we
tag and untag the set of WakeLocks to track the set of com-
ponents that have operated on each WakeLock, thereby
allowing us to precisely identify which components were
responsible for releasing the lock.

Policy Checking. Once we have computed the dataflow
solution, we determine the category of the component
by traversing the class hierarchy to find the appropriate
component superclass. We then check whether the exit
points specified by the corresponding policy are indeed
at a low-energy state (as determined by the dataflow anal-
ysis). If so, the component is verified to be energy safe,
and if not, we flag a warning.

4 Evaluation

To apply our policies on real-world apps, we down-
loaded 2,718 free apps from Android Market and free-
warelovers.com. Of these 2,718 apps, we focused on the
740 (27.2%) which used the WakeLock API. We extracted
the content of the .apk file of each of these apps and con-
verted it to Java bytecode using tools such as ded [13],
Soot [5] and dex2jar [2]. Unfortunately, due to limitations
of these tools, we were only able to convert 328 of the
740 applications into Java bytecode (44.3%).

We ran our analysis on these 328 apps and verified that
145 (44.2%) comply with our policies. For the remaining
183 (55.8%), our analysis was not able to show that our
policies hold. We manually inspected a set of 50 randomly
selected apps (out of 183), and we were able to both
find bugs (which we describe first), and also sources of
imprecision in our analysis (which we cover second).

Common Bugs. Table 2 illustrates our analysis’ results,
based on the components and the callbacks where policy
violations occur. The most common violation occurs in
the implementation of activities using WakeLocks. Devel-

opers often fail to release a lock on a resource when they
override the onPause or onStop callback, thus leading
to the corresponding resource remaining held even after
the user has navigated away from the activity screen (by
hitting “Home” or by triggering a new activity). Several
apps by Imoblife Inc. [3] featured this pattern, and so by
installing these apps on a test Android device, we could
verify using the Android debugging shell that a Partial
WakeLock (that ensures that the CPU is running) was
kept alive after powering up the application’s main screen
and then navigating to the home screen. In addition, a
considerable number of apps were flagged as violating
our policy regarding BroadcastReceivers. A BroadcastRe-
ceiver object is only valid while onReceive is executing
and hence our tool flags situations where a WakeLock is
held beyond the execution of this callback. Similar vio-
lations to policies pertaining to services’ lifecycle were
also triggered, as well as for other components that could
not be determined during component resolution.
Asynchrony. To justify our decision to track asyn-
chronous intent calls, we ran our tool with asynchronous
call resolution disabled. This caused 5 of the applications
that were earlier verified to be rejected. Note, this number
would be higher if our results were not skewed by pre-
cision issues (mentioned later). NetCounter [4] (version
0.14.1) was one of these cases; the onReceive method
of the OnAlarmReceiver BroadcastReceiver starts the
NetCounterService after acquiring mLockStatic (a
partial WakeLock). The target service releases the Wake-
Lock as soon as its onStart method is called, and so
this lock pattern is not considered to be harmful by our
asynchronous-call-aware analysis. A different approach,
on the other hand, that ignored the service call, flagged
the application as harmful, as high energy state reached
the end of the onReceive callback. We note that a con-
servative approach, like the one proposed by Pathak [16],
that would account for all possible targets of the service
call would not be able to verify this case, as we cannot ex-
pect all possible target-services to release the WakeLock
in question as soon as they execute.
Causes of Imprecision. As with most verifiers, failure
of our tool to verify that an app satisfies our policies, does
not necessarily mean that the app is buggy. This is due
to precision issues inherent to static analysis, leading to
false positives (i.e. the app is correct, but our tool cannot
verify it). The most important of these issues is the lack
of full path sensitivity. For example, our analysis cannot
handle cases where the acquire and release operations are
guarded by the same condition, or when the lock is only
acquired/released under some complex condition. Addi-
tional imprecision is introduced when wrapper methods,
controlled by parameters, are used around acquire/release
operations. The latter issue can be resolved by enhancing
our tool with a constant propagation analysis. Further-



more, although our analysis has some path sensitivity on
special conditionals, i.e. it propagates a “released” state
at the false branch of an WakeLock.isHeld() or a “non-
null WakeLock object” check, this path sensitivity can be
fooled if the developer manually re-implements the func-
tionality of WakeLock.isHeld() using other primitives.

Intent resolution also causes imprecision. Since the
target component of an intent is an object, intent resolu-
tion reduces to static alias analysis, which is known to
be a hard problem. We use standard alias analyses from
WALA, which inevitably suffer from imprecision (about
60% success rate for intent resolution), causing intent
calls to be ignored, which then leads to false warnings.

Soundness. A current limitation of our analysis arises
from the treatment of exception edges. WALA’s support
for exception handling is rather conservative and impre-
cise: exception edges that could flow out of a series of
instructions (e.g. field access) are not connected to the
nearest relevant catch block but to the exit node of the
CFG. Propagating state through these edges would be
a huge source of imprecision for our analysis, as even
if the developer did actually release a WakeLock in the
catch or finally block of a try block, high energy
state would circumvent it. Instead, we decided to kill all
facts over exceptional edges, with the expectation that
a more precise CFG inference algorithm with respect to
exception handling would fix this limitation.

An important aspect to consider is the correctness of
our policies. During their design we focused on the com-
ponents that made most use of the WakeLocks, i.e. Ac-
tivities, Services and BroadcastReceivers. Our policies
are, therefore, more refined for these components and
more coarse-grained for the rest. Further, regardless of
the type of component they are related to, all our policies
refer to the exit block of certain callback methods which
leads to both precision and soundness issues. Precision
is lost since we ignore any notion of lifecycle for our so
called “unresolved” components and instead follow the
more conservative approach of examining the exit state of
every possible callback. Finally soundness is jeopardized,
as our static technique does not track how long a callback
takes to execute, and so by examining just the return point
of a method, it overlooks the case of a method looping and
not terminating (a situation akin to no-sleep dilation [16]).

5 Discussion

The main contribution of this paper is a tool that verifies
that an Android application abides by a set of policies
regarding its use of the WakeLock API. Running our
analysis on a total of 328 Android applications revealed
a considerable number of bugs (some of them verified
manually) and enlightened us on the use of resource man-

agement principles in real-world applications.
Our long-term goal is to create a full-fledged analysis

that verifies the absence of all no-sleep bugs. Some of the
steps that remain towards this goal are to: (1) formally
define a set of policies to fully express the conditions that
need to be held to guarantee the absence of all kinds of
no-sleep bugs, as described in [16] (e.g. including no-
sleep dilation); (2) combine these policies in our existing
analysis or extend the analysis if necessary; (3) address
the precision and soundness issues outlined above.
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