
“Rewrite it in Rust” Considered Harmful?
Security Challenges at the C-Rust FFI

Anonymous Authors

ABSTRACT

You must be reading this because you haven’t heard the good

news. Rewrite it in Rust! Seriously—rewrite it in Rust!

Stop reading this, go pick any software you use and love (or

more likely use but hate)—and rewrite it in Rust.

Have you not tried the Rust cat, grep and find?
Seriously, it will blow your mind.

What? You’re too busy and don’t have time?

It’s okay. Really, it’s fine!

Just rewrite it one piece at a time!

And, in return, your system will be, I promise you,

Faster and more secure, through and through.

We’ve never seen a slowdown. Not one bug. Not two.

What? I’m lying? I sound like SBF and Madoff too?

Okay, I guess you’re right. It’s too good to be true.

At the boundary there is lots of glue.

And if you get it wrong, your Rust types are through.

You’re back to C, bits and bytes,

Worse off because of the rewrite.

Lucky for you, we have fancy types to make this right.

And precise C-Rust conditions we can automatically verify.

How? Where? Why?

Read on. We’ll clarify.

This is a story about FFI.

1 INTRODUCTION

Responding to the seemingly never-ending series of secu-

rity threats attributed to memory unsafety—including 60

to 70 percent of today’s browser and kernel vulnerabili-

ties [32, 38]—system developers today are increasingly turn-

ing to memory-safe languages. Well, they’re turning to Rust.

This is because Rust promises to be both fast and safe, and

targets the sort of abstractions needed for low-level systems

implementation, including interaction with the OS, low-level

memory management, and concurrency [24]. These advan-

tages and others (in particular, Rust’s tooling support) helped

Rust cross the chasm from early adopters to infrastructures

companies like Amazon and Google. Even Consumer Reports
is on board the RIIR train [21]:

As much as possible, companies, government

organizations, and other entities should commit

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

to using memory-safe languages [read: Rust] for

new products and tools and newly developed

custom components.

Less widely acknowledged, though, is that rewriting only

components of a large C/C++ system in a memory-safe lan-

guage introduces an additional attack surface: the foreign

function interface (FFI) boundary between the new compo-

nent and existing code. In fact, interaction with Rust can

make the situation worse.
1
Consider this C function code:

1 void add_twice(int *a, int *b) {

2 *a += *b;

3 *a += *b;

4 }

It’s a bit weird—it performs in-place arithmetic on integer

pointers—but also the reason we’d want to rewrite it to safe
Rust:

1 #[no_mangle]

2 pub extern "C"

3 fn add_twice(a: &mut i32, b: &i32) {

4 *a += *b;

5 *a += *b;

6 }

Unfortunately, Rust and Cmakes different assumptions about

a and b and calling, say, add_twice(&bar, &bar) from C re-

sults in undefined behavior. This is because the Rust compiler

can—and does—-optimize add_twice to *a += 2 * *b. (After

all, in Rust, a and b can’t alias.) And, this optimization can

introduce a new memory unsafety bug. If the C application

uses add_twice to update memory-relevant data (e.g., to dou-

ble the size of a buffer twice)
2
using the “safe” Rust function

is worse than using the original “unsafe” C version.

The striking thing about this example is that both the orig-

inal C code and the Rust code in isolation pass the respective

compiler with no errors. Yet, in tandem the C and Rust code

silently invoke undefined behavior which—depending on

the architecture, version of Rust, and version of LLVM—can

result in an arbitrary memory unsafety.

In practice, this problem is neither artificial nor easily pre-

ventable. Fundamentally, Rust and C/C++ cannot interact

1
We’d like to think that that Apple is not slow to adopt Rust, but ahead of

everyone working on “improved memory handling” and “improved checks”

for type confusion for their C – the language not quality – codebase [2].

The security updates are reassuring.

2
Sure, this is a contrived example. But we all know there is probably C code

out there doing this. Probably in the kernel.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

directly—they have different approaches to typing, mem-

ory management, and control-flow. The result is manually

written “glue” code, which can easily break implicit assump-

tions (e.g., calling conventions and data representations),

critical invariants (e.g., memory- and type-safety, synchro-

nization and resource-handling protocols), and introduce

undefined behavior bugs across language boundaries (e.g.,

unwinding panics, integer representation bugs, silently cre-

ating invalid values for enumerated and tagged union types).

This problem is widely understood in a broader context (e.g.,

[1, 23, 29, 35, 37]); FFIs are notoriously tricky and prone to

bugs [7], even in Rust FFI, where unsafe is virtually unavoid-

able [4, 28]. Developers currently lack principled techniques

and tools to develop safe FFIs, so today rewriting code in Rust

is likely to introduce new bugs and vulnerabilities [42]—and

make existing vulnerabilities easier to exploit [33, 36].

In the rest of this paper, we look at real-world attempts

to rewrite components of large C/C++ systems in Rust—

and the new class of bugs and issues that developers in-

troduce when writing FFI code (Section 2). The impedance

mismatch between Rust and C results in lots of unsafe code

at the FFI boundary—and a significant challenge for devel-

opers porting components to Rust. This is not surprising—

but then again the Venn diagram of system builders who

know Rust and those who knew Modula 3 and know the

problem deeply [6, 39] has no overlap. With Rust we have

another shot—at least if we extend the Rust FFI boundary

with a refinement type system we call 𝑅3
(Section 3), (Rewrite

it in Rust with Refinements). Our type system has two parts:

(1) an allocation tracker on the C/C++ side, which tracks

C allocations and allows us to enforce needed Rust safety

invariants on pointers that are passed to Rust; and (2) a refine-

ment type tracker on the Rust side [30] for verifying Rust

code [3, 5, 20, 22], which ties together pointers and their

bounds and can be used to track security checks and pre-

conditions for Rust code exposed via the FFI. Together they

lower the specification and proof burden endemic to almost

all verification tools—and they eliminate FFI bugs much like

Rust eliminates memory safety bugs: with zero-overhead but

somewhat annoying syntax and error messages that you’ll,

over time, love.

2 FFI SAFETY ISSUES

In this section, we investigate the security vulnerabilities that

occur when porting C and C++ components to Rust in real

world applications. Because we are specifically interested in

bugs at the FFI layer, we do not consider bugs that are present

in the original C or C++ code and do not directly affect the

ported code. That is, we model a scenario where the original

code is memory-safe; the ported code is memory-safe; and

we consider memory safety and undefined behavior that may
arise across the FFI layer between the two pieces of code.

We assume that a developer is acting in good faith to port

the code, but may not get all boundary code correct. Due to

errors in porting, the buggy application may pass malformed

or wrong inputs to FFIs, such as incorrect values for pointers

and buffer lengths. Since the memory is shared between

the C/C++ application and the Rust library, any incorrect

handling of this input from the Rust library could result in

memory safety error that affects the entire application.

Ported Libraries and Applications. We analyzed the Rust

implementation of two network protocols libraries: the TLS

library rusTLS [18] and the HTTP library Hyper [15], and

their FFIs [19]. These libraries and their C bindings are ac-

tively developed and currently integrated in Curl [13], and

thus offer a good case study for C-to-Rust FFIs. We also

consider a few other projects: Encoding_C [14], a Rust im-

plementation of the Encoding standard that replaced a C++

implementation in Firefox; Ockam [12], a secure end-to-end

communication library; Artichoke [11], a Rust implemen-

tation of the Ruby language; and core challenges found by

the Rust language team [16, 17];

We categorize these issues in Section 2 as follows. First,

we have violations of spatial and temporal memory safety.

Second, we find a common class of errors in exception safety.

Unwinding the stack across the FFI boundary is undefined

behavior, and so constitutes a serious failure case which has

sometimes gone unnoticed. Third, we discuss errors related

to type safety and Rust critical invariants, including aliasing,

pointer safety assumptions, and reference mutability. Finally,

we discuss other miscellaneous kinds of undefined behavior.

2.1 Spatial and Temporal Safety

Rust, C, and C++ have fundamentally different approaches to

memory management. Rust’s type-system statically tracks

object lifetimes and ownership [26], C programmers are re-

sponsible for manually managing memory, and though C++

provides memory-safe abstractions, C++ applications can

also freely mix them with raw pointers. Crucially, when mi-

grating C/C++ systems to Rust, developers need to reconcile

these differences through the FFI layer, which is difficult to

get right—for example, sharing pointers across FFI bound-

aries can lead to cross-language memory management issues,

in which pointers allocated by one language are freed by the

other [31]. Things get even more complicated when C and

Rust code attempt to share ownership of memory.

Shared Ownership. rusTLS allows clients to create certifi-

cate verifiers and share them across server configurations.

To enable this sharing, rusTLS represents these verifiers us-

ing atomic reference-counters (Arc), so that their memory is

automatically reclaimed when they are no longer referenced.

2

Safety Category Bugs and Issues

Spatial & Temporal Safety Use-after-free: curl-#3541. Double-free: curl-#7982. Memory mgmt: rustls-ffi-#230, rustls-ffi-L18.

Exception Safety hyper-#2397, rustls-#886, rust-#74990, artichoke-#35.

Type Safety & Invariants Read-only data: rustls-ffi-#, encoding-c-L1009. String conventions: rustls-ffi-L169, Bugzilla-

1374629. Type confusion: ockam-#1801.

Other undefined behavior Null access: curl-#176, curl-#270. Buffer slice: encoding-c-L310, encoding-c-L561, encoding-c-

L384. Moving semantics: rust-#38258, rust-bindgen-#778, rust-bindgen-#607, encoding_c-#5.

Table 1: A taxonomy of memory-safety issues that occur in the interaction of C/C++ with Rust.

1 // (1) Create a verifier by cloning a certificate store.

2 pub extern "C" fn rustls_client_cert_verifier_new(

3 store: *const rustls_root_cert_store,

4) -> *const rustls_client_cert_verifier {

5 let store: &RootCertStore = try_ref_from_ptr!(store);

6 return Arc::into_raw(... store.clone() ...) as *const _;

7 }

8 // (2) "Free" a verifier. C code must consider this pointer

9 // unusable after this call and must not call this function twice.

10 pub extern "C" fn rustls_client_cert_verifier_free(

11 verifier: *const rustls_client_cert_verifier) {

12 ffi_panic_boundary! {

13 if verifier.is_null() { return; }

14 // We construct an Arc and drop it (count goes from 1 to 0)

15 unsafe { drop(Arc::from_raw(verifier)) };

16 }

17 }

18 // (3) Similar to example to the above but without Arc.

19 pub extern "C" fn rustls_root_cert_store_free(store: ...) {

20 ffi_panic_boundary! {

21 let store = try_box_from_ptr!(store);

22 drop(store)

23 }

24 }

Figure 1: Example of safety issues in rusTLS FFI functions. Exception

safety: (1) can unwind across the FFI boundary if clone runs out of

memory. Temporal safety: (2) and (3) can result in use-after-free and

double-free errors due to incorrect function parameters or repeated

function calls.

However, rusTLS exposes pointers to these objects through

its FFI and thus requires clients to explicitly relinquish them

through the function rustls_client_cert_verifier_free in

Figure 1. This function unsafely reconstructs the Arc ref-

erence from a raw pointer and immediately drops it, thus

decreasing the reference count. Importantly, this function

expects the count to be 1 (which is the caller’s copy), so

when used correctly, this function will also drop the object

referenced by the pointer. The caller can however misuse

the function—for example by freeing the same pointer twice

or reusing a freed pointer—causing a miscount in the num-

ber of references, and introducing double- and use-after-free

vulnerabilities in “safe” parts of rusTLS. Currently, rusTLS

cannot detect a double-free: reading the count of a “freed”

Arc reference triggers undefined behavior in the first place

[rustls-#32]. Moreover, C implementations of TLS libraries

may not necessarily rely on special APIs to release these ob-

jects (as well as the objects they refer to), and simply require

clients to use the standard free function instead. Replacing

such C implementations with rusTLS in a system can easily

result in cross-language memory corruptions and introduce

new memory vulnerabilities in the system.

2.2 Exception Safety

Rust handles unrecoverable errors (usually expressed with

the panic! macro or any number of panicking function calls,

such as unwrap or integer addition) by unwinding the stack

and call destructors along the way. Importantly, unwinding

across the FFI boundary is considered undefined behavior.

Though this is currently debated within the Rust commu-

nity [project-ffi-unwind], FFIs should explicitly handle pan-

ics to guarantee exception safety—and ideally communicate

a failure to the caller. Rust does not provide any particular

support with this task though, and so it is entirely up to de-

velopers to enforce safety in their code
3
. rusTLS for instance

wraps fallible top-level external functions through the macro

ffi_panic_boundary! (e.g., Figure 1), which catches any un-

winding panic and returns a default value to the caller. Since

many basic operations in Rust can possibly panic, it is easy

to miss necessary handlers. For an explicit bug, note that

rustls_client_cert_verifier_new in Figure 1 is not excep-

tion safe, as cloning RootCertStoremay trigger an unhandled

out-of-memory panic that unwinds across the FFI.

2.3 Rust Invariants and Type Safety

Idiomatic Rust code heavily relies on the invariants guar-

anteed by the type system to ensure memory safety and

correctness. Since C/C++ programs do not generally follow

the same invariants [8], C/C++ may violate them when in-

teracting with Rust code, especially after rewrites.

3
The situation is even worse when handling recoverable errors, as there are

no guidelines or tools to help with this. Discussed in detail in Section 4.

3

https://github.com/curl/curl/issues/3541
https://github.com/curl/curl/issues/7982
https://github.com/rustls/rustls-ffi/issues/230
https://github.com/rustls/rustls-ffi/blob/c209ba3f88c8de2fae5f7ce9eb93390bd2c5b6f5/src/io.rs#L18
https://github.com/hyperium/hyper/issues/2397
https://github.com/rustls/rustls/issues/886
https://github.com/rust-lang/rust/issues/74990
https://github.com/artichoke/artichoke/issues/35
https://github.com/rustls/rustls-ffi/issues/
https://github.com/hsivonen/encoding_c/blob/78b4ce4b38d21d3de0a798cb9f5713998a43d739/src/lib.rs#L1009
https://github.com/rustls/rustls-ffi/blob/cedaa4b92ed8903bccf470cdb46090888cd4f567/src/rslice.rs#L169
https://bugzilla.mozilla.org/show_bug.cgi?id=1374629
https://bugzilla.mozilla.org/show_bug.cgi?id=1374629
https://github.com/build-trust/ockam/issues/1801
https://github.com/curl/curl/issues/176
https://github.com/curl/curl/issues/270
https://github.com/hsivonen/encoding_c_mem/blob/8772bd1a25146faeabe54d5691883841d4b03273/src/lib.rs#L310
https://github.com/hsivonen/encoding_c_mem/blob/8772bd1a25146faeabe54d5691883841d4b03273/src/lib.rs#L561
https://github.com/hsivonen/encoding_c/blob/78b4ce4b38d21d3de0a798cb9f5713998a43d739/src/lib.rs#L384
https://github.com/hsivonen/encoding_c/blob/78b4ce4b38d21d3de0a798cb9f5713998a43d739/src/lib.rs#L384
https://github.com/rust-lang/rust/issues/38258
https://github.com/rust-lang/rust-bindgen/issues/778
https://github.com/rust-lang/rust-bindgen/issues/607
https://github.com/hsivonen/encoding_c/issues/5
https://github.com/rustls/rustls-ffi/pull/32
https://github.com/rust-lang/project-ffi-unwind

1 // Rust expects that src & dest don't overlap.

2 pub unsafe extern "C" fn decoder_decode_to_utf8(decoder: ...,

3 src: *const u8, src_len: *mut usize,

4 dst: *mut u8, dst_len: *mut usize,

5) -> u32 {

6 let src_slice = std::slice::from_raw_parts(src, *src_len);

7 let dst_slice = std::slice::from_raw_parts_mut(dst, *dst_len);

8 let ... = (*decoder).decode_to_utf8(src_slice, dst_slice);

9 ...

10 }

Figure 2: FFI functions from the encoding_c library potentially vul-

nerable to aliasing violations. Rust requires that src_slice and

dest_slice do not overlap, however, the code does not check this.

Aliasing. Function decode_to_utf8 (Figure 2) decodes the

content of an immutable slice &[u8] into a mutable slice
&mut [u8]. Rust aliasing discipline ensures that these slices

do not overlap which allows, among other things, numerous

compiler optimizations. But these conditions are not checked

or guaranteed by decoder_decode_to_utf8when reconstruct-

ing the slices through unsafe functions fram_raw_parts and
from_raw_parts_mut. The wrapper replaces buffer slices with

C-compatible equivalent types—raw pointers and their re-

spective lengths—which may alias or overlap. As with the

example in Section 1, this can result in undefined behavior

in the Rust FFI and unsound optimizations by LLVM.

2.4 Other Undefined Behavior

Some sources of undefined behavior are more subtle and

involve details of the languages involved and specific con-

ventions of the architecture’s ABIs.

Glue code. A common source of issues in the examples

discussed above is that glue code needs to use unsafe APIs

to reconstruct Rust abstractions. Unsafe functions shift the

responsibility of ensuring safety from the compiler to de-

velopers who design these interfaces independently from

the applications that use them and thus incorporate must

critical assumptions in the interface itself. However, most of

these assumptions (e.g., pointers’ lifetime, ownership, and

bounds), cannot be validated at runtime—Rust does not pro-

vide constructs to check them—and so FFI functions (implic-

itly) trust the caller and assume that inputs are valid. This

trust is misplaced: FFIs represent a boundary between safe

Rust components and arbitrary, untrusted code. Thus, caller

code may pass invalid inputs that can easily break Rust’s

safety guarantees, which defeats the main reason for migrat-

ing unsafe libraries to Rust and creates ideal conditions for

cross-language attacks [33].

ABI Compatibility. ABI-level optimizations can be prob-

lematic in C/C++/Rust systems, in which components are

compiled with different compilers and possibly incompatible

optimizations. For example, on 64-bit architectures compil-

ers can pack consecutive 32-bits function arguments into a

single 64-bit register and thus reduce register pressure [9].

Cross-language function calls can however result in unde-

fined behavior, if the respective compilers do not pack func-

tions inputs in the same way. For example, though C’s size_t

are Rust u32 types are both 32-bits, C compilers pack them

but rustc does not [ockam-#1791].

3 𝑅3
DESIGN

While one could imagine modifications to the FFI assump-

tions made by Rust to guard against individual errors dis-

cussed in Section 2, a solution entirely within Rust is likely

impossible in general. This is because many of the FFI bugs

surveyed are fundamentally cross-language issues. Instead,

we propose that both C and Rust must conform to a shared,

formally-based domain-specific language, which provides a

safe-by-construction abstraction over the FFI boundary.

Concretely, 𝑅3
’s goal is to ensure that Rust code is not the

source of any new memory safety issues in the application.

To achieve this goal, 𝑅3
consists of:

(1) An allocation tracker integrated into the C/C++ appli-

cation’s memory allocator, which allows querying the

application’s current allocations and their lengths.

(2) A type system using refinement types [10, 25, 41] that
ensures that developers writing FFI code perform ad-

equate security checks to ensure safety, including es-

tablishing Rust’s memory safety invariants.

𝑅3
’s allocation tracker. The allocation tracker is a runtime

component that tracks allocations made by the C/C++ appli-

cation code, so that their metadata can be queried by Rust

FFI code, and to enforce cross-language temporal safety. This

allocation tracker can be implemented simply by wrapping

calls to malloc, free, and related functions in the C/C++ pro-

gram, as done in numerous security frameworks [27, 34, 40].

For example, to prevent cross-language frees, the allocator

keeps track of the set of pointers converted to Rust refer-

ences (current_refs) and then 𝑅3
’s wrapped free ensures

that C/C++ code never frees allocations currently owned by

Rust.

𝑅3
’s refinement type system. 𝑅3

annotates Rust’s unsafe

FFI functions with refinement types that ensure Rust unsafe

features are used safely in FFI code. Refinement types such as

Flux [30] are an extension to Rust type system that allows

types to be decorated with logical predicates that constraint

the set of values represented by a type. For example, we

can use the refinement type {ptr: *mut T | not_null(ptr)}

to represent the set of non-null pointers to type T. Impor-

tantly, to establish that an arbitrary pointer has such a re-

finement, the refinement type-system requires the code to

explicitly check that condition. Thus, using refinement types

4

https://github.com/build-trust/ockam/issues/1791

1 // Signature for the new safe "from_raw_parts_mut_safe" function

2 pub unsafe fn from_raw_parts_mut_safe<'a, T>

3 (data: *mut T, len: usize) -> &'a mut [T]

4 requires not_null(data) && valid_cpp_alloc(data, len)

5 && not_aliased(current_refs, data, len)

6 ensures add_to_current_refs(data, len);

7

8 // FFI code must meet above preconditions to call the

9 // R3 function from_raw_parts_mut_safe

10 #[r3_safeffi]

11 pub unsafe extern "C" fn decoder_decode_to_utf8(

12 ..., dst: *mut u8, dst_len: *mut usize) -> u32 {

13 if dst == std::ptr::null() { /* err handling */ }

14 // dst now has type *mut u8[not_null(dst)]

15 // i.e., dst meets the 1st pre-condition

16 if !alloc_tracker.is_valid_cpp_alloc(dst, *dst_len)

17 { /* err handling */ }

18 // dst now meets the first 2 preconditions

19 if current_refs.contains(dst, dst_len) {/* err handling */ }

20 // dst now meets all pre-conditions

21 let dst_slice = from_raw_parts_mut_safe(dst, *dst_len);

22 }

Figure 3: 𝑅3
safe implementation of Figure 2.

we can ensure that before calling unsafe functions such as

std::slice::from_raw_parts_mut, the inputs are appropri-

ately sanitized by calling the allocator tracker to check the

relevant properties.

We show how 𝑅3
can prevent various FFI safety issues by

revisiting the example from Section 2.

Temporal Safety. To prevent temporal-safety vulnerabili-

ties arising due to sharing memory ownership (Section 2.1),

𝑅3
provides FFI-safe Arc implementations. Intuitively, safe

APIs Arc::into_raw_safe and Arc::from_raw_safe allow FFI

code to convert from standard Rust Arc references to C/C++

pointers and back, while keeping the reference count ac-

curate. In addition to the reference count, these APIs keep

track of the address of the references converted into raw

pointers in the allocator state, and thus can ensure that only

valid pointers can be converted back to Rust references. For

example, using these APIs, the FFI code from Figure 1 can

automatically eliminate the double-free vulnerability in func-

tion rustls_client_cert_verifier_free.

Writing safe FFI in 𝑅3
. To enforce safety in the FFI from Fig-

ure 2, we must ensure that the input pointers and lengths pa-

rameters designate valid memory regions and respect Rust’s

non-aliasing expectations. 𝑅3
statically ensures these con-

ditions through the refinements in the type signature of

from_raw_parts_mut_safe in Figure 3, which provides a safe

interface to std::slice::from_raw_parts_mut. In a nutshell,

those refinements disallow invalid inputs and require the FFI

wrapper decoder_decode_to_utf8 to perform safety checks

to validate them, as shown in Figure 3.

Spatial safety. For example, to establish the pre-condition

not_null(data), 𝑅3
requires the wrapper to perform a null-

check on the pointer data—failing to do so results in a compile-

time error. The more complicated invariant valid_cpp_alloc

requires querying the allocator tracker to determine that

[data,len) is contained within a single allocated object.

Non-aliasing invariants. In contrast to the local safety is-

sues discussed above, some Rust invariants (e.g., non-aliasing

references) require global, context-sensitive reasoning. For

example, to correctly establish the pre-condition not_aliased,

𝑅3
tracks all pointer and length pairs converted in the current

context through the thread-local global variable current_refs.

Automatic modifications to this variable are then captured

via the post-condition predicate add_to_current_refs, which

allows the code above to type-check.

Exception safety. 𝑅3
forces all FFI Rust functions to catch

and handle panics at the boundary so that these are not

propagated to the C/C++ application. This is possible because

𝑅3
requires all FFI Rust functions to be annotated (as shown

in Figure 3) with r3_safeffi. Developers, however, are still

responsible for suitably responding to the panic, for instance,

by exiting the process or transforming this into an error code

for the application.

4 DISCUSSION

There are a number of important challenges for securing

the C-Rust FFI beyond what we have discussed here—and

beyond what 𝑅3
addresses. For example, while we have dis-

cussed handling panics, handing recoverable exceptions in

FFI code is far more difficult and typically requires that the

FFI code translate this exception into an actionable error to

the host application. Existing solutions are ad-hoc and typi-

cally require duplicating error-handling code on both sides

of the FFI, and are thus prone to bugs [ExternError]. Depend-

ing on the application, idiomatic solution could automatic

translate Rust panics into corresponding C++ exceptions, or

convert them into a suitable C error-codes. Another chal-

lenge is categorizing possible errors that could occur when

C++/C applications expose callbacks to the Rust code, which

we believe could introduce additional classes of safety errors.

As code written in Rust becomes more common, the inter-

action between other languages and Rust will only continue

to become an attack surface. When manually writing Rust

FFI code today, it is very easy to introduce (or re-introduce)

memory safety bugs; we hope that future tools like 𝑅3
will

help developers write secure FFI code, and as a consequence,

actually deliver on the promise and safety guarantees of Rust.

REFERENCES

[1] Amal Ahmed. Verified compilers for a multi-language world. In 1st
Summit on Advances in Programming Languages (SNAPL 2015). Schloss

5

https://docs.rs/ffi-support/0.4.3/ffi_support/struct.ExternError.html

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[2] Apple. About the security content of macOS Monterey 12.6.3 — sup-

port.apple.com. https://support.apple.com/en-us/HT213604, 2023. [Ac-

cessed 03-Feb-2023].

[3] Vytautas Astrauskas, Aurel Bílỳ, Jonáš Fiala, Zachary Grannan,

Christoph Matheja, Peter Müller, Federico Poli, and Alexander J Sum-

mers. The prusti project: Formal verification for rust. In NASA Formal
Methods: 14th International Symposium, NFM 2022, Pasadena, CA, USA,
May 24–27, 2022, Proceedings, pages 88–108. Springer, 2022.

[4] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller,

and Alexander J. Summers. How do programmers use unsafe rust?

Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.
[5] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J Sum-

mers. Leveraging rust types for modular specification and verification.

Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–30,
2019.

[6] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer,

Marc E Fiuczynski, David Becker, Craig Chambers, and Susan Eggers.

Extensibility safety and performance in the spin operating system.

In Proceedings of the fifteenth ACM symposium on Operating systems
principles, pages 267–283, 1995.

[7] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit

Jhala, and Deian Stefan. Finding and preventing bugs in JavaScript

bindings. In IEEE Symposium on Security and Privacy (S&P). IEEE, May

2017.

[8] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf.

Translating C to safer Rust. Proceedings of the ACM on Programming
Languages, 5(OOPSLA):1–29, 2021.

[9] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev. Register packing:

Exploiting narrow-width operands for reducing register file pressure.

In 37th International Symposium on Microarchitecture (MICRO-37’04),
pages 304–315, 2004.

[10] Tim Freeman and Frank Pfenning. Refinement types for ml. In Proceed-
ings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, pages 268–277, 1991.

[11] GitHub. artichoke/artichoke — github.com. https://github.com/

artichoke/artichoke. [Accessed 02-Feb-2023].

[12] GitHub. build-trust/ockam — github.com. https://github.com/build-

trust/ockam. [Accessed 02-Feb-2023].

[13] GitHub. curl/curl: A command line tool and library for transferring

data with URL syntax — github.com. https://github.com/curl/curl.

[Accessed 02-Feb-2023].

[14] GitHub. hsivonen/encoding_c: C bindings for encoding_rs —

github.com. https://github.com/hsivonen/encoding_c. [Accessed 02-

Feb-2023].

[15] GitHub. hyperium/hyper: An HTTP library for Rust — github.com.

https://github.com/hyperium/hyper. [Accessed 02-Feb-2023].

[16] GitHub. rust-lang/rust — github.com. https://github.com/rust-lang/

rust. [Accessed 02-Feb-2023].

[17] GitHub. rust-lang/rust-bindgen: Automatically generates Rust FFI

bindings to C (and some C++) libraries. — github.com. https://github.

com/rust-lang/rust-bindgen. [Accessed 02-Feb-2023].

[18] GitHub. rustls/rustls: A modern TLS library in Rust — github.com.

https://github.com/rustls/rustls. [Accessed 02-Feb-2023].

[19] GitHub. rustls/rustls-ffi: C-to-rustls bindings — github.com. https:

//github.com/rustls/rustls-ffi. [Accessed 02-Feb-2023].

[20] GitHub. verus-lang/verus: Verified Rust for low-level systems code

— github.com. https://github.com/verus-lang/verus, 2022. [Accessed

03-Feb-2023].

[21] Yael Grauer et al. Future of memory safety: Challenges and recom-

mendations. Security Planner, page 16, January 2023.

[22] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by func-

tional translation. Proceedings of the ACM on Programming Languages,
6(ICFP):711–741, 2022.

[23] Wilson C Hsieh, Marc E Fiuczynski, Charles Garrett, Stefan Savage,

David Becker, and Brian N Bershad. Language support for extensible

operating systems. In Proceedings of the Workshop on Compiler Support
for System Software, pages 127–133, 1996.

[24] O JE. Why scientists are turning to rust. Nature, 588:185, 2020.
[25] Ranjit Jhala, Niki Vazou, et al. Refinement types: a tutorial. Foundations

and Trends® in Programming Languages, 6(3–4):159–317, 2021.
[26] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

Rustbelt: Securing the foundations of the rust programming language.

Proceedings of the ACM on Programming Languages, 2(POPL):1–34,
2017.

[27] Albert Kwon, Udit Dhawan, JonathanM Smith, Thomas F Knight Jr, and

Andre DeHon. Low-fat pointers: compact encoding and efficient gate-

level implementation of fat pointers for spatial safety and capability-

based security. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 721–732, 2013.

[28] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Her-

mann Härtig. Sandcrust: Automatic sandboxing of unsafe components

in rust. In Proceedings of the 9th Workshop on Programming Languages
and Operating Systems, pages 51–57, 2017.

[29] Byeongcheol Lee, BenWiedermann, Martin Hirzel, Robert Grimm, and

Kathryn S McKinley. Jinn: synthesizing dynamic bug detectors for for-

eign language interfaces. In Proceedings of the 31st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
36–49, 2010.

[30] Nico Lehmann, Adam Geller, Gilles Barthe, Niki Vazou, and Ranjit

Jhala. Flux: Liquid types for rust. arXiv preprint arXiv:2207.04034, 2022.
[31] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C. S. Lui. De-

tecting cross-language memory management issues in rust. In Com-
puter Security – ESORICS 2022: 27th European Symposium on Research
in Computer Security, Copenhagen, Denmark, September 26–30, 2022,
Proceedings, Part III, page 680–700, Berlin, Heidelberg, 2022. Springer-
Verlag.

[32] MSRC Security Research Matt Miller. Trends, challenges, and

strategic shifts in the software vulnerability mitigation land-

scape. https://github.com/microsoft/MSRC-Security-Research/

blob/master/presentations/2019_02_BlueHatIL/2019_01%20-

%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%

20shifts%20in%20software%20vulnerability%20mitigation.pdf, 2019.

[Accessed 03-Feb-2023].

[33] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. Cross-

language attacks. In Proceedings 2022 Network and Distributed System
Security Symposium. NDSS, volume 22, pages 1–17, 2022.

[34] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve

Zdancewic. Softbound: Highly compatible and complete spatial mem-

ory safety for c. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 245–258,
2009.

[35] George C Necula, Scott McPeak, and Westley Weimer. Ccured: Type-

safe retrofitting of legacy code. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 128–139, 2002.

[36] Michalis Papaevripides and Elias Athanasopoulos. Exploiting mixed

binaries. ACM Trans. Priv. Secur., 24(2), jan 2021.

[37] James T Perconti and Amal Ahmed. Verifying an open compiler using

multi-language semantics. In Programming Languages and Systems:
23rd European Symposium on Programming, ESOP 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings 23, pages

6

https://support.apple.com/en-us/HT213604
https://github.com/artichoke/artichoke
https://github.com/artichoke/artichoke
https://github.com/build-trust/ockam
https://github.com/build-trust/ockam
https://github.com/curl/curl
https://github.com/hsivonen/encoding_c
https://github.com/hyperium/hyper
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://github.com/rustls/rustls
https://github.com/rustls/rustls-ffi
https://github.com/rustls/rustls-ffi
https://github.com/verus-lang/verus
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

128–148. Springer, 2014.

[38] The Chromium Project. Memory safety — chromium.org. https://www.

chromium.org/Home/chromium-security/memory-safety/. [Accessed

03-Feb-2023].

[39] Emin Gün Sirer, Stefan Savage, Przemyslaw Pardyak, Greg P. DeFouw,

Mary Ann Alapat, and Brian Bershad. Writing an operating system

with modula-3. In Proceedings of the 1st Workshop on Compiler Support
for System Software, pages 134–140, 1996.

[40] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael

Sammler, Peter Druschel, and Deepak Garg. Erim: Secure, efficient in-

process isolation with protection keys (mpk). In Proceedings of the 28th

USENIX Conference on Security Symposium, SEC’19, page 1221–1238,

USA, 2019. USENIX Association.

[41] Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. Refinement types for haskell. In Proceedings of the 19th
ACM SIGPLAN international conference on Functional programming,
pages 269–282, 2014.

[42] Hui Xu, Zhuangbin Chen,Mingshen Sun, Yangfan Zhou, andMichael R.

Lyu. Memory-safety challenge considered solved? an in-depth study

with all rust cves. ACM Trans. Softw. Eng. Methodol., 31(1), sep 2021.

7

https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/

	Abstract
	1 Introduction
	2 FFI Safety Issues
	2.1 Spatial and Temporal Safety
	2.2 Exception Safety
	2.3 Rust Invariants and Type Safety
	2.4 Other Undefined Behavior

	3 R3 Design
	4 Discussion
	References

