
Interprocedural Analysis of Asynchronous Programs ∗

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Rupak Majumdar
UC Los Angeles

rupak@cs.ucla.edu

Abstract

An asynchronous program is one that contains proce-
dure calls which are not immediately executed from
the callsite, but stored and “dispatched” in a non-
deterministic order by an external scheduler at a later
point. We formalize the problem of interprocedu-
ral dataflow analysis for asynchronous programs as
AIFDS problems, a generalization of the IFDS prob-
lems for interprocedural dataflow analysis. We give an
algorithm for computing the precise meet-over-valid-
paths solution for any AIFDS instance, as well as a
demand-driven algorithm for solving the correspond-
ing demand AIFDS instances. Our algorithm can be
easily implemented on top of any existing interpro-
cedural dataflow analysis framework. We have imple-
mented the algorithm on top of BLAST, thereby ob-
taining the first safety verification tool for unbounded
asynchronous programs. Though the problem of solv-
ing AIFDS instances is EXPSPACE-hard, we find that
in practice our technique can efficiently analyze pro-
grams by exploiting standard optimizations of interpro-
cedural dataflow analyses.
Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification.
General Terms: Languages, Verification, Reliability.
Keywords: asynchronous (event-driven) program-
ming, dataflow analysis.
∗ This research was sponsored in part by the research grants NSF-
CCF-0427202, NSF-CNS-0541606, and NSF-CCF-0546170.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

1. Introduction

Asynchronous programming is a popular and efficient
programming idiom for managing concurrent interac-
tions with the environment. In addition to the usual, or
synchronous, function calls where the caller waits at
the callsite until the callee returns, asynchronous pro-
grams have asynchronous procedure calls which, in-
stead of being executed from the callsite, are stored in a
task queue for later execution. An application-level dis-
patcher chooses a call from the task queue, executes it
to completion (which might lead to further additions to
the task queue), and repeats on the remaining pending
calls.

Asynchronous calls permit the interleaving of sev-
eral logical units of work, and can be used to hide the
latency of I/O-intensive tasks by deferring their exe-
cution to a point where the system is not otherwise
busy. They form the basis of event-driven program-
ming, where the asynchronous calls correspond to call-
backs that may be triggered in response to external
events. Further, if mechanisms to ensure atomicity, ei-
ther by using synchronization [24] or by using transac-
tions [15, 29], are used to ensure asynchronous calls are
executed atomically, then the scheduler can be multi-
threaded, running different asynchronous calls concur-
rently on different threads or processors [32]. There
have been a variety of recent proposals for adding asyn-
chronous calls to existing languages via libraries, such
as LIBASYNC [20], LIBEVENT [21], and LIBEEL [6, 5].
These libraries have been used to build efficient and
robust systems software such as network routers [19]
and web servers [25]. Further, several recent languages
such as NESC [12], a language for networked em-
bedded systems, and MACE [23], a language to build
distributed systems, provide explicit support for asyn-
chronous calls.

The flexibility and efficiency of asynchronous pro-
grams comes at a price. The loose coupling between
asynchronously executed methods makes the control
and data dependencies in the program difficult to fol-
low, making it harder to write correct programs. As
asynchronous programs are typically written to provide
a reliable, high-performance infrastructure, there is a
critical need for techniques to analyze such programs
to find bugs early or to discover opportunities for opti-
mization.

For programs that exclusively use synchronous func-
tion calls, interprocedural dataflow analysis [31, 28]
provides a general framework for program analysis.
In the setting of [28], interprocedural dataflow prob-
lem is formulated as a context-free reachability prob-
lem on the program graph, i.e., a reachability problem
where the admissible paths in the graph form a con-
text free language of nested calls and returns. Unfor-
tunately, this approach does not immediately general-
ize to asynchronous programs, for example, by treat-
ing asynchronous calls as synchronous. In fact, such an
analysis yields unsound results, because the facts that
hold at the point where the asynchronous call is made
may no longer hold at the point where the stored call
is finally dispatched. Though the values passed as pa-
rameters in the asynchronous call remain unaltered till
the dispatch, the operations executed between the asyn-
chronous call and its dispatch may completely alter the
values of the global variables. Further, the pairing of
asynchronous calls and their actual dispatches makes
the language of valid program executions a non-context
free language, and a simple reduction to context free
reachability seems unlikely.

This paper formalizes the problem of dataflow anal-
ysis for asynchronous programs as Asynchronous In-
terprocedural Finite Distributive Subset (AIFDS) prob-
lems, a generalization of the IFDS problems of Reps,
Horwitz and Sagiv [28] to programs that additionally
contain asynchronous procedure calls. The key chal-
lenge in devising algorithms to solve AIFDS problems
precisely, that is, to compute the meet over all valid
paths (MVP) solutions for such problems, lies in find-
ing a way to handle the unbounded set of pending asyn-
chronous calls, in addition to the unbounded call stack.
We surmount this challenge through three observations.

1. Reduction We can reduce an AIFDS instance into
a standard, synchronous dataflow analysis problem
where the set of dataflow facts is the product of the

original set with a set of counters which track, for
each of finitely many kinds of pending calls, the ex-
act number of instances of the call that are pend-
ing. Though the reduced instance has the same solu-
tion as the AIFDS instance, we cannot use standard
dataflow analyses to compute the solution as the lat-
tice of dataflow facts is now unbounded: the coun-
ters can grow unboundedly to track the number of
pending asynchronous calls.

2. Approximation Given any fixed parameter k ∈ N,
we can compute approximations of the meet-over-
valid path solutions in the following way. We com-
pute an under-approximation of the infinite reduced
instance using a counter that counts up to k, drop-
ping any asynchronous call if there are already k

pending instances for that call. We call this problem
the k-reduced IFDS problem. We compute an over-
approximation of the infinite reduced instance using
a counter that counts up to k, and bumps up to infin-
ity as soon as the value exceeds k. This has the ef-
fect of tracking up to k pending calls precisely, and
then supposing that an unbounded number of calls
are pending if an additional asynchronous call is per-
formed. We call this problem the k∞-reduced IFDS
problem. For each k, both the over- and the under-
approximations are instances of standard interpro-
cedural dataflow analysis as the abstraction of the
counters makes the set of dataflow facts finite. Thus,
we can compute over- and under-approximations of
the precise solution of the AIFDS instance by run-
ning standard interprocedural dataflow analysis al-
gorithms [28].

3. Convergence In a crucial step, we prove that for
each AIFDS instance, there always exists a k for
which the solutions of the over-approximate IFDS
instance and the under-approximate IFDS instance
coincide, thereby yielding the precise solution for
the AIFDS instance. Thus, our simple algorithm for
computing the meet over valid paths solutions for
AIFDS instances is to run an off-the-shelf interpro-
cedural analysis on the k and k∞-reduced IFDS in-
stances for increasingly larger values of k, until the
two solutions converge upon the precise AIFDS so-
lution.

The proof of the third observation, and therefore,
that our algorithm is complete, proceeds in two steps.
First, we demonstrate the existence of a finite represen-

tation of the backward or inverse MVP solution of the
infinite reduced instance. To do so, we design a back-
ward version of the algorithm of Reps, Horwitz and
Sagiv [28] and prove that it terminates with the finite
upward-closed backwards solution by using properties
of well quasi-orderings [1, 10]. Second, we prove that
if the backward solution is the upward closure of some
finite set, then there exists a k at which the solutions
of the finite k- and k∞-reduced IFDS instances con-
verge. Though the correctness proof uses some techni-
cal machinery, its details are entirely hidden from an
implementer, who need only know how to instantiate a
standard interprocedural dataflow analysis framework.

We have implemented this algorithm on top of the
BLAST interprocedural reachability analysis which is
a lazy version of the summary-based interprocedural
reachability analysis of [28]. The result is an automatic
safety verifier for recursive programs with unbound-
edly many asynchronous procedure calls. Our reduc-
tion technique enables the reuse of optimizations that
we have previously found critical for software verifi-
cation such as on-the-fly exploration, localized refine-
ment [18], and parsimonious abstraction [17]. While
we cannot hope for an algorithm that works efficiently
for all asynchronous programs (the AIFDS problem is
EXPSPACE-hard, in contrast to IFDS which is poly-
nomial time), our initial experiments suggest that in
practice the forward reachable state space and the k re-
quired for convergence is usually small, making the al-
gorithm practical. In preliminary experiments, we have
used our implementation to verify and find bugs in an
open source load balancer (plb) and a network test-
ing tool (netchat). We checked for null pointer errors,
buffer overruns, as well as application-specific proto-
col state properties. In each case, our implementation
ran in less than a minute, and converged to a solution
with k = 1.

Related Work. Recently, the reachability (and hence,
dataflow analysis) problem for asynchronous programs
was shown decidable [30], using an algorithm that we
believe will be difficult to implement and harder to
scale to real systems. First, the algorithm works back-
wards, thereby missing the opportunities available for
optimization by restricting the analysis to the (typi-
cally sparse) reachable states that we have found criti-
cal for software verification [18]. Second, one crucial
step in their proof replaces a recursive synchronous
function with an equivalent automaton constructed us-

Figure 1. An Example Plb

ing Parikh’s lemma [26]. Thus, their analysis cannot
be performed in an on-the-fly manner: the language-
theoretic automaton construction must be performed on
the entire exploded graph which can be exponentially
large in software verification. Finally, instead of multi-
set rewriting systems and Parikh’s lemma, our proof of
completeness relies on counter programs and a version
of context free reachability on well quasi-ordered state
spaces [10].

Counters [22] have been used to model check con-
current C [16] and Java programs, via a reduction to
Petri Nets [7]. However, those algorithms were not
interprocedural and did not deal with recursion. Our
proof technique of providing a forward abstraction-
based algorithm whose correctness is established using
a backward algorithm was used in [16] and formalized
for a general class of infinite state systems in [13].

Notice that in contrast to the decidability of AIFDS,
the dataflow analysis problem for two threads each
with recursive synchronous function calls is undecid-
able [27]. This rules out similar algorithmic techniques
to be applied to obtain exact solutions for multithreaded

programs, or models in which threads and events are
both present.

2. Problem

Figure 1 shows an asynchronous program Plb culled
from an event-driven load balancer. Execution begins
in the procedure main which makes an asynchronous
call to a procedure (omitted for brevity) that adds re-
quests to the global request list r, and makes another
asynchronous call to a procedure reqs that processes
the request list (highlighed by a filled box). The reqs

procedure checks if r is empty, and if so, reschedules it-
self by asynchronously calling itself. If instead, the list
is not empty, it allocates memory for the first request on
the list, makes an asynchronous call to client which
handles the request, and then (synchronously) calls it-
self (highlighted by the unfilled box) after moving r to
the rest of the list. The procedure client handles in-
dividual requests. It takes as input the formal c which
is a pointer to a client t structure. In the second line
of client the pointer c is dereferenced, and so it is
critical that when client begins executing, c is not
null. This is ensured by the check performed in reqs

before making the asynchronous call to client. How-
ever, we cannot deduce this by treating asynchronous
calls as synchronous calls (and using a standard inter-
procedural dataflow analysis) as that would addition-
ally conclude the unsound deduction that r is also not
null when client is called.

We shall now formalize the asynchronous interpro-
cedural finite dataflow analysis (AIFDS) framework, a
generalization of the IFDS framework of [28], solu-
tions of which will enable us to soundly deduce that
when client begins executing, c is non-null, but that
r may be null.

2.1 Asynchronous Programs

In the AIFDS framework, programs are represented us-
ing a generalization of control flow graphs, that include
special edges corresponding to asynchronous function
calls.

Let P be a finite set of procedure names. An Asyn-
chronous Control Flow Graph (ACFG) Gp for a pro-
cedure p ∈ P is a pair (Vp, Ep) where Vp is the set
of control nodes of the procedure p, including a unique
start node vs

p and a unique exit node ve
p, and Ep is a set

of directed intraprocedural edges between the control
nodes Vp, corresponding to one of the following:

• an operation edge corresponding to a basic block of
assignments or an assume predicate derived from a
branch condition,

• a synchronous call edge to a procedure q ∈ P , or
• an asynchronous call edge to a procedure q ∈ P .

For each directed call edge, synchronous or asyn-
chronous, from v to v′ we call the source node v the
call-site node, and the target node v ′ the return-site
node.
EXAMPLE 1: Figure 2 shows the ACFG for the proce-
dures main, reqs and client of the program Plb. For
each procedure, the start node (resp. exit node) is de-
noted with a short incoming edge (resp. double circle).
The labels on the intraprocedural edges are either oper-
ations corresponding to assumes (in box parentheses),
and assignments, or asynchronous call edges, shown in
filled boxes, e.g., the edge at v1, or synchronous call
edges, shown in unfilled boxes, such as the recursive
call edge at node v9, for which the call-site and return-
site are respectively v9 and v10. 2

A Program G∗ comprises a set of ACFGs Gp for
each procedure in p ∈ P . The control locations of G∗

are V ∗, the union of the control locations of the indi-
vidual procedures. The edges of G∗ are E∗, the union
of the (intraprocedural) edges of the individual proce-
dures together with a special set E ′ of interprocedural
edges defined as follows. Let Calls be the set of (in-
traprocedural) synchronous call edges in G∗. For each
synchronous call edge from call-site v to procedure q

returning to return-site v′ in Calls we have:

• An interprocedural call-to-start edge from the call-
site v to the start node vs

q of q, and,
• An interprocedural exit-to-return edge from the exit

node ve
q of q to the return-site v′.

As in [28], the call edges (or call-to-return-site edges)
allow us to model local variables and parameter passing
in our framework.

In Figure 2, the dotted edges correspond to interpro-
cedural edges. The edge from call-site v9 to the start
node v4 of reqs is a call-to-start edge, and the edge
from the exit node v10 to the return-site v10 is an exit-
to-return edge.

An Asynchronous Program is a program G∗ that
contains a special dispatch procedure main (with
ACFG Gmain), which is not called by any other proce-

Figure 2. ACFGs for Plb

dure, and that has, for every other procedure, a self-loop
synchronous call edge from its exit node ve

main
to itself.

The exit node ve
main

is called the dispatch node, the
self-loop synchronous call edges of the dispatch node
are called dispatch call edges, the call-to-start edges
from the dispatch node are called dispatch call-to-start
edges, and the exit-to-return edges to the dispatch node
are called dispatch exit-to-return edges.

Thus, an Asynchronous Program is a classical super-
graph of [28] together with special asynchronous call
edges, and a special dispatch procedure that has syn-
chronous call edges for each procedure, which are used
to model asynchronous dispatch.
EXAMPLE 2: The ACFG for main shown in Figure 2
is the dispatch procedure for Plb. The exit node v3,
shaded in blue, is the dispatch node with dispatch edges
to reqs and client. The interprocedural edge from v3

to v12 is a dispatch call-to-start edge to client and the
edge from v15 to v3 is a dispatch exit-to-return edge. 2

2.2 Asynchronous Program Paths

Executions of an asynchronous program correspond
to paths in the ACFGs. However, not all paths cor-
respond to valid executions. In addition to the stan-
dard requirement of interprocedural validity, namely
that synchronous calls and returns match up, we require
that a dispatch can take place only if there is a pending
asynchronous call to the corresponding procedure.
Paths. A path of length n from node v to v ′ is a
sequence of edges π = (e1, . . . , en) where v is the
source of e1, v′ is the target of en, and for each 0 ≤
k ≤ n − 1, the target of ek is the source of ek+1. We
write π(k) to refer to the kth edge of the path π.
Interprocedural Valid Paths. Suppose that each call
edge in Calls is given a unique index i. For each call
edge i ∈ Calls suppose that the call-to-start edge is
labeled by the symbol (i and the exit-to-return edge is
labeled by the symbol)i. We say that a path π from v
to v′ is an interprocedural valid path if the sequence of
labels on the edges along the path is a string accepted
by the following Dyck language, generated by the non-
terminal D:

M → ε | M (i M)i for each i ∈ Calls

D → M | D (i M for each i ∈ Calls

We use IVP(v, v′) to denote the set of all interproce-
dural valid paths from v to v′.

Intuitively, M corresponds to the language of per-
fectly balanced parentheses, which forces the path
to match the return edges to the corresponding syn-
chronous call sites, and D allows for some procedures
to “remain on the call stack.”

Unlike in synchronous programs, not all Dyck
paths correspond to potential executions of the Asyn-
chronous Program, as we have not accounted for asyn-
chronous procedure calls. For example, the path along
the edges between nodes v0,v1,v2,v3,v12 of the ACFGs
of Figure 2 is a valid interprocedural path, but does
not correspond to a valid asynchronous execution as
there is no pending asynchronous call to client at
the dispatch node v3. To restrict analyses to valid asyn-
chronous executions, we use schedules to map dispatch
call-to-start edges on paths to matching prior asyn-
chronous call edges.
Schedules. Let π be a path of length n. We say σ :
N → N is a schedule for π iff σ is one-to-one, and for
each 0 ≤ k ≤ n, if π(k) is a dispatch call-to-start edge
to procedure p, then:
• 0 ≤ σ(k) < k, and,
• the edge π(σ(k)) is an asynchronous call to proce-

dure p.

Intuitively, the existence of a schedule implies that at
each synchronous “dispatch” of procedure p at step k,
there is a pending asynchronous call to p made in the
past, namely the one on the σ(k)-th edge of the path.
The one-to-one property of σ ensures that the asyn-
chronous call is dispatched only once. There are no
asynchronous executions corresponding to interproce-
dural paths that have no schedules.
EXAMPLE 3: Figure 3 shows a path of Plb, abbrevi-
ated to show only the asynchronous call edges and syn-
chronous call-to-start edges. Ignore the boxes with the
numbers on the left and the right for the moment. For
the prefix comprising all but the last edge, there are two
schedules indicated by the arrows on the left and right
of the path. Both schedules map the dispatch call-to-
start edge 2 to the asynchronous call at edge 1. The left
(right) schedule maps the dispatch call-to-start edges
8, 9 to the asynchronous calls at 5, 3 respectively (3, 5
respectively). If we include the last edge, there is no
schedule as there are three dispatch call-to-start edges
to client but only two asynchronous calls, and so, by

Figure 3. Path showing a sequence of asynchronous
posts (in shaded boxes) and synchronous calls (in un-
filled boxes). Two different schedules are shown using
the arrows from dispatch call-to-start edges to asyn-
chronous call points.

the pigeonhole principle there is no one-to-one map. 2

2.3 Asynchronous IFDS

An instance of a dataflow analysis problem for asyn-
chronous programs can be specified by fixing a par-
ticular asynchronous program, a finite set of dataflow
facts, and for each edge of the program, a distributive
transfer function that given the set of facts that hold at
the source of the edge, returns the set of facts that hold
at the target.
AIFDS Instance. An instance A of an asynchronous
interprocedural finite distributive subset problem or
(AIFDS problem), is a tuple A = (G∗, Dg, Dl,M,u),
where:
1. G∗ is an asynchronous program (V ∗, E∗),
2. Dg, Dl are finite sets, respectively called global and

local dataflow facts – we write D for the product
Dg × Dl which we called the dataflow facts,

3. M : E∗ → 2D → 2D maps each edge of G∗ to a
distributive dataflow transfer function,

4. u is the meet operator, which is either set union or
intersection.

Unlike the classical formulation for synchronous
programs (e.g. [28]), the asynchronous setting requires
each dataflow fact to be explicitly split into a global and
a local component. This is because at the point where
the asynchronous call is made, we wish to capture,
in addition to which call was made, the initial input
dataflow fact resulting from the passing of parameters
to the called procedure. We cannot use a single global
set of facts to represent the input configuration, as oper-
ations that get executed between the asynchronous call
and the actual dispatch may change the global fact, but
not the local fact.

For example, in Plb (Figure 1), at the point where
the asynchronous call to client is made, the global
pointer r is not null, but this fact no longer holds
when client begins executing after a subsequent dis-
patch. However, the local pointer c passed via a param-
eter cannot be changed by intermediate operations, and
thus, is still not null when client begins executing af-
ter a subsequent dispatch.

Thus, our dataflow facts are pairs of global facts
Dg and local facts Dl. By separating out global and
local facts, when dispatching a pending asynchronous
call, we can use the “current” global fact together with
the local fact from the asynchronous call to which the
schedule maps the dispatch.
EXAMPLE 4: The following is an example of an AIFDS
instance. G∗ is the asynchronous program of Figure 2,
Dg is the set {r, r̄} that respectively represent that the
global pointer r is definitely not null and r may be
null, and Dl is the set {rc, rc, c, c̄} that respectively
represent that the local pointer rc is definitely not null,
rc may be null, c is definitely not null and c may be
null. We omit the standard transfer functions for these
facts for brevity. Thus, the pair (r̄, c) is the dataflow
fact representing program states where r may be null,
but c is definitely not null. 2

Path Functions. Let A = (G∗, Dg, Dl,M,u) be an
AIFDS instance. Given an interprocedural valid path
π, we define a path relation PR(A)(π) ⊆ D × D

that relates dataflow facts that hold before the path to
those that hold after the operations along the path are
executed. Formally, given an interprocedural valid path

π = (e1, . . . , en) from v to v′ we say that (d, d′) ∈
PR(A)(π) if there exists a schedule σ for π and a
sequence of data flow facts d0, . . . , dn such that, d =
d0, d′ = dn and, for all 1 ≤ k ≤ n:
• if ek is an asynchronous call edge, then dk = dk−1,
• if ek is a dispatch call-to-start edge, then dk =

(dg, dl) where dk−1 = (dg, ·) and (·, dl) ∈
M(eσ(k))(dσ(k))

• otherwise dk ∈ M(ek)(dk−1).
We define the distributive closure of a function f as

the function: λS. ∪x∈S f(x). The path function is the
distributive closure of:

PF (A)(π) = λd.{d′ | (d, d′) ∈ PR(A)(π)}

As a path may have multiple schedules, the path
relation is defined as the union of the path relation for
each possible schedule, which, in turn is defined by
appropriately composing the transfer functions for the
edges along the path as follows. We directly compose
the transfer functions for the edges that are neither
asynchronous calls nor dispatch call-to-start edges. We
defer applying the transfer function for asynchronous
call edges until the matching dispatch call-to-start edge
is reached. For each call-to-start edge, we use the given
schedule to find the matching asynchronous call edge.
The global dataflow fact after the dispatch is the global
fact just before the dispatch. The local fact after the
dispatch, is obtained by applying the transfer function
for the matching asynchronous call edge to the dataflow
fact just before the matching asynchronous call was
made.
EXAMPLE 5: Figure 4 shows a path of the program
Plb, together with the dataflow facts obtained by ap-
plying the path function on the prefix of the path upto
each node. At the start of the first call to reqs, the
global r and the local rc may both be null. After the
first check, at v5, we know that r is definitely not null,
hence the global fact is r. Similarly after the malloc

and the subsequent check, the local fact at v7 is rc, i.e.,
rc is not null. After the subsequent assignment to r,
it may again become null, hence the global fact is r̄.
Note that at v7 where the asynchronous call to client

is made, r holds, but not at v3 just before the dispatch
call to client. There is a single schedule for this path,
that maps the dispatch edge from v3 to v12 to the asyn-
chronous call edge from v7 to v8. Thus, the global fact
at v12 is the same as at the previous dispatch location,

Figure 4. A path of the program Plb. The rectangles
denote the dataflow facts obtained by applying the path
function on the prefix of the paths upto each node. The
shaded grey box is the global fact, and the unshaded
box the local fact at each point. To reduce clutter, we
show the facts at nodes where they differ from the facts
at the predecessor.

namely r̄, that r may be null. The local fact at v12 is ob-
tained by applying the transfer function of the matching
asynchronous call to the dataflow fact (r, rc) that held
at the matching asynchronous call site at v7. As the call
passes the local rc as the formal c, the local fact is c,
i.e., c is not null. 2

AIFDS Solutions. Let A = (G,Dg , Dl,M,u) be an
AIFDS instance. The meet over all valid paths (MVP)
solution to A is a map MVP(A) : V ∗ → 2D , defined
as:

MVP(A)(v) = uπ∈IVP(vs

main
,v)PF (A)(π)(>)

Thus, given an AIFDS instance A, the problem is to
find an algorithm to compute the MVP solution for A.

If a path has no schedule, then its path relation is
empty, and so its path function maps all facts to ⊥.
Thus, the MVP solution only takes into account paths
that correspond to a valid asynchronous executions.

3. Algorithm

There are two problems that any precise interproce-
dural analysis for asynchronous programs must solve.
First, it must keep track of the unbounded set of pend-
ing asynchronous calls in order to only consider valid
asynchronous program executions. Second, it must find
a way to determine the local dataflow facts correspond-
ing to the input parameters, that hold after a dispatch
call-to-start edge. This is challenging because these lo-
cal facts are the result of applying the transfer func-
tion to the dataflow facts that held at the point when the
matching asynchronous call was made, which may be
unboundedly far back during the execution.

Our approach to solving both these problems is to re-
duce an AIFDS instance into a standard IFDS instance
by encoding the pending asynchronous calls inside the
set of dataflow facts, by taking the product with a new
set of facts that count how many asynchronous calls to
a particular function, with a given input dataflow fact
are pending. However, as the pending set is unbounded,
this new set of facts is infinite, and so we cannot di-
rectly solve the instance. Instead, we abstractly count
the number of facts, thus yielding a finite instance, and
then use the standard IFDS algorithm to obtain a se-
quence of computable under- and over-approximations
of the exact AIFDS solution, which we prove, is guar-
anteed to converge to the exact solution. We first recall
the standard (synchronous) Interprocedural Dataflow
Analysis framework and then describe our algorithm.
Solving Synchronous IFDS Instances. A Syn-
chronous Dataflow Analysis problem instance (IFDS
[28]) is a tuple I = (G∗, D, {>},M,u) that is a spe-
cial case of an AIFDS instance, where:

1. the program G∗ has no asynchronous call edges,
2. there is a single global set of dataflow facts D.

For any valid interprocedural path from v to v ′ all
schedules are trivial as there no dispatch call edges. The
MVP solution for an IFDS instance I can be computed
by using the algorithm of [28] that we shall refer to as
RHS.

THEOREM 1. [Algorithm RHS [28]] For every IFDS
instance I = (G∗, D, {>},M,u), we have RHS(I) =
MVP(I).

Counters. A counter C is a contiguous subset of N ∪
{∞}. We assume that ∞ ∈ C whenever the counter
C is an infinite subset. For a counter C , and a natural
number n ∈ N, maxC(n) is n if n ∈ C and max C

otherwise, and minC(n) is n if n ∈ C and min C

otherwise. For a map f , we write f [s 7→ v] for the
new map:

λx. if x = s then v else f(x)

A counter map f is a map from some set S to a counter
C . For any s ∈ S, we write f +C s for the counter map:

f [s 7→ maxC(f(s) + 1)]

and we write f −C s for the map:

f [s 7→ minC(f(s) − 1)]

Note that both f +C s and f −C s are maps from S

to C . Intuitively, we think of f +C s (resp. f −C s) as
“adding” (resp. “removing”) an s to (resp. from) f . We
define the counter C∞ as the set N∪ {∞}, and for any
k ≥ 0, the counter Ck as {0, . . . , k}, and the counter
C∞

k as {0, . . . , k,∞}. We write c0 for the counter map
λs.0. A C∞ counter map tracks the exact number of
s in f . A Ck counter map tracks the exact number of
s in f upto a maximum value of k, at which point
it “ignores” subsequent additions. A C∞

k counter map
tracks the exact number of s in f upto a maximum of k

after which a subsequent increment results in the map
getting updated to ∞, which remains, regardless of the
number of subsequent removals.

3.1 Algorithm ADFA

We now present our Algorithm ADFA for computing
the MVP solution of AIFDS instances. The key step of
the algorithm is the use of counter maps to encode the
set of pending asynchronous calls inside the dataflow
facts, and thereby converting an AIFDS instance into
an IFDS instance.

Given an AIFDS instance A = (G∗, Dg, Dl,M,u),
and a counter C we define the C-reduced IFDS in-
stance as the tuple (G∗

C , DC , {>},MC ,uC) where:
• G∗

C is obtained by replacing each asynchronous call
edge in G∗ with a fresh trivial operation edge be-
tween the same source and target node,

• DC is the set (Dg × Dl) × (P × Dl → C). The
elements of the set are pairs (d, c) where d is a
dataflow fact in Dg × Dl and c is a counter map
that tracks, for each pair of asynchronous call and
input dataflow fact, the number of such calls that are
pending.

• MC is defined on the new dataflow facts and edges
as follows.

if e is an asynchronous call edge
to p in G∗ then MC(e)(d, c) =
{(d, c +C (p, d′l)) | (·, d′l) ∈ M(e)(d)}

if e is a dispatch call to start edge
to p in G∗ then MC(e)(d, c) =
{((dg, d

′
l), c −C (p, d′l)) | c(p, d′l) > 0, d = (dg, ·)}

otherwise MC(e)(d, c) =
{(d′, c) | d′ ∈ (M(e)(d)}.

• uC is the union (resp. intersection) operation if u is
the union (resp. intersection) operation.

Intuitively, the reduced transfer function for an asyn-
chronous call “adds” the pair of the called procedure
and the initial local dataflow fact to the counter map.
For a dispatch call-to-start edge to procedure p, the
transfer function returns the set of tuples of the cur-
rent global dataflow fact together with those local facts
dl for which the counter map of (p, dl) is positive, to-
gether with the countermaps where the pairs (p, dl)
have been removed. If for all pairs (p, ·) the counter
map value is zero, then the transfer function returns the
empty set, i.e. ⊥.
EXAMPLE 6: Figure 4 shows a path of the C∞-reduced
instances of Plb. On the left of each (intraprocedural)
path, we show the dataflow facts resulting from ap-
plying the path function to the prefix of the path upto
each corresponding node. The shaded box contains the
global dataflow fact, the white box the local fact, and
the numbers i, j, k on top represent the counter map
values for (reqs,>), (client, c), and (client, c̄) re-
spectively. For all other pairs, the counter map is always
zero. Note that the value for (reqs,>) increases after
the asynchronous call at v1, decreases after the dispatch
at v3 and again increases after the asynchronous call at
v11. At the second occurrence of v3 (the dispatch loca-
tion), (client, c) is the only pair with client as the
first parameter, for which the counter map value is pos-
itive. Thus, after the dispatch, the dataflow fact is the

pair of the global r̄ from the dispatch location and the
local c from the counter map. 2

Our first observation is that the MVP solution of the
C∞-reduced instance is equivalent to the MVP solution
of the original AIFDS instance. This is because the
C∞-reduced instance exactly encodes the unbounded
number of pending asynchronous call and initial local
fact pairs within the counter maps of the dataflow facts.
Thus, for any interprocedural valid path the (reduced)
path function returns the union of the set of dataflow
facts resulting from every possible schedule.

For two sets s ⊆ B×D and s′ ⊆ B×D, we say that
s=̇s′ (resp. s⊆̇s′) if {b | (b, ·) ∈ s} is equal to (resp.
included in) the {b′ | (b′, ·) ∈ s′}. For two functions
f : A → 2B×D and f ′ : A → 2B×D′ , we say
f=̇g (resp. f ⊆̇g) if for all x, the set f(x)=̇f ′(x) (resp.
f(x)⊆̇f ′(x)).

THEOREM 2. [Counter Reduction] For every AIFDS
instance A, if I is the C∞-reduced instance of A, then
MVP(I)=̇MVP(A).

Unfortunately, this reduction does not directly yield
an algorithm for solving AIFDS instances, as the C∞-
reduced instance has infinitely many dataflow facts, due
to the infinite number of possible counter maps.

Our second observation is that we can generate fi-
nite IFDS instances that approximate the C∞-reduced
instance and thus, the original AIFDS instance. In par-
ticular, for any k, the Ck-reduced and C∞

k instances
are, respectively, an under-approximation and an over-
approximation of the C∞-instance.

In the Ck-reduced IFDS instance, the path function
returns ⊥ for any path along which there are k + 1 (or
more) successive dispatches to some function starting
with some given local fact. This happens as because
the number of tracked pending calls never rises above
k, after the k successive dispatches, the map value
must be zero, thus the k + 1-th call yields a ⊥. Thus,
the MVP solution for the Ck-reduced instance is an
underapproximation of the exact AIFDS solution that
includes exactly those paths along which there are at
most k successive dispatches to a particular procedure
with a given local fact.

Dually, in the C∞
k -reduced IFDS instance, once a

k + 1-th pending call is added for some procedure, the
counter map is updated to ∞ (instead of k + 1). As a
result, from this point on, it is always possible to dis-
patch a call to this procedure. Thus, the MVP solution

for the C∞
k -reduced instance is an over-approximation

of the exact AIFDS solution that includes all the valid
paths of the AIFDS instance, and also extra paths corre-
sponding to those executions where at some point there
were more than k pending calls to some procedure.
EXAMPLE 7: Figure 3 illustrates how the C1-reduced
instance and the C∞

1 -reduced instance are respectively
under- and over-approximations of the C∞-reduced
IFDS instance of Plb. Suppose that Dg and Dl are sin-
gleton sets containing >. On the left and right we show
the sequence of dataflow facts obtained by applying the
path functions for the C1 and C∞

1 respectively, on the
prefix of the operations upto that point on the path. The
numbers i, j above the boxes indicate the counter map
value for (reqs,>) and (client,>) respectively. As
each asynchronous call is made, the counter map for
the corresponding call is updated, and for each dispatch
call, the value is decremented.

In the C1-reduced instance (left), the second asyn-
chronous call to client is dropped, i.e., the counter
is not increased above 1, and thus, the second dispatch
to client results in ⊥. Thus, the effect of this path
is not included in the (under-approximate) MVP solu-
tion for the C1-reduced instance. In the C∞

1 -reduced
instance (right), the second asynchronous call results
in the counter for client is increased to ∞. Thus,
in this instance, the second dispatch to client yields
a non-⊥ dataflow fact. Moreover, any subsequent dis-
patch yields a non-⊥ value, all of which get included
in the (over-approximate) MVP solution for the IFDS
instance. 2

THEOREM 3. [Soundness] For every AIFDS instance
A, for every k ≥ 0, if I ,Ik,I∞k are respectively the C∞-
reduced, Ck-reduced and C∞

k -reduced IFDS instances
of A, then:

(a) MVP(Ik)⊆̇MVP(I)⊆̇MVP(I∞k)

(b) MVP(Ik)⊆̇MVP(Ik+1)

(c) MVP(I∞
k+1)⊆̇MVP(I∞k)

The proof of the soundness Theorem 3, follows by
observing that the Ck- (resp. C∞

k -) instance effectively
only considers a subset (resp. superset) of all the valid
asynchronous executions, and for each path for which
both the AIFDS path function and the reduced in-
stance’s path function return a non-⊥ value, the value’s
returned by the two are identical.

Algorithm 1 Algorithm ADFA

Input: AIFDS instance A

Output: MVP solution for A

k = 0
repeat

k = k + 1
Ik = Ck-reduced IFDS instance of A

I∞k = C∞
k -reduced IFDS instance of A

until RHS(Ik)=̇RHS(I∞
k)

return RHS(Ik)

As for each k, the counters Ck and C∞
k are finite,

we can use RHS to compute the MVP solutions for
the finite IFDS instances Ik and I∞k , thereby computing
under- and over- approximations of the MVP solution
for the AIFDS instance.

Our algorithm ADFA (shown in Algorithm 1) for
computing the MVP solution for an AIFDS instance
A is to compute successively more precise under- and
over-approximations. An immediate corollary of the
soundness theorem is that if we find some k for which
the under- and over-approximations coincide, then the
approximations are equivalent to the solution for the
C∞-reduced instance, and hence, the exact MVP so-
lution for A. The next theorem states that for every
AIFDS instance, there exists a k for which the under-
and over-approximations coincide, and therefore, the
Algorithm ADFA is guaranteed to terminate.

THEOREM 4. [Completeness] For each AIFDS in-
stance A there exists a k such that, if Ik and I∞k are
respectively the Ck- and C∞

k -reduced IFDS instances
of A, then MVP(Ik)=̇MVP(I∞

k)

This Theorem follows from the following lemma.

LEMMA 1. [Pointwise Completeness] Let A =
(G∗, Dg, Dl,M,u) be an AIFDS instance, and I be
the C∞-reduced IFDS instance of A. For every d ∈
Dg × Dl and v ∈ V ∗, there exists a kd,v ∈ N such
that for all k ≥ kd,v , ∃ck s.t. (d, ck) ∈ MVP(Ik)(v)
iff ∃c s.t. (d, c) ∈ MVP(I)(v) iff ∃c∞k s.t. (d, c∞k) ∈
MVP(I∞k)(v).

To prove Theorem 4 we pick any k greater than
maxd,v kd,v (this is well defined since D and V ∗ are
finite sets). Thus, the crux of our completeness result is
the proof of Lemma 1 which we postpone to Section 5.

THEOREM 5. [Correctness of ADFA] For every
AIFDS instance A, Algorithm ADFA returns MVP(A).

The proof follows from Theorems 1,3,4.

3.2 Demand-driven AIFDS Algorithm

We now present an algorithm for solving a Demand-
AIFDS problem. This algorithm works by invoking a
standard Demand-IFDS Algorithm on Ck- and C∞

k -
reduced IFDS instances of the AIFDS instance.
Demand-AIFDS Instance. An instance A of a De-
mand AIFDS problem is a pair (A, vE) where A is an
AIFDS instance, and vE is a special query node of the
supergraph of A. Given a Demand AIFDS instance,
the Demand-AIFDS problem is to determine whether
MVP(A)(vE) 6=⊥.
Demand-IFDS and DemRHS. We define a Demand-
IFDS Instance as an AIFDS instance (I , vE) where I

is an IFDS instance. Let DemRHS be a Demand-IFDS
Algorithm such that DemRHS(I , vE) returns TRUE iff
MVP(I)(vE) 6=⊥.

To solve a Demand-AIFDS problem, we use Ck-
and C∞

k -reduced under- and over-approximations as
before. Only, instead of increasing k until the under-
and over-approximations coincide, we increase it until
either:

1. in the under-approximation (i.e., the Ck-reduced
IFDS instance), the MVP solution is not ⊥, in which
case we can deduce from Theorem 3 that the exact
AIFDS solution is also not ⊥, or dually,

2. in the over-approximation (i.e., the C∞
k -reduced

IFDS instance), the MVP solution is ⊥, in which
case we deduce from Theorem 3 that the exact
AIFDS solution is also ⊥.

The completeness theorem guarantees that this
demand-driven algorithm DemADFA (summarized in
Figure 2) terminates.

THEOREM 6. [Correctness of DemADFA] For each
Demand-AIFDS instance (A, vE), DemADFA termi-
nates and returns TRUE if MVPA(vE) 6=⊥ and FALSE
otherwise.

Though we would have liked polynomial time algo-
rithms for solving AIFDS and Demand-AIFDS prob-
lems, the following result (also in [30]), that follows by
reduction from reachability of structured counter pro-
grams [11], shows that this is impossible.

Algorithm 2 Algorithm DemADFA

Input: AIFDS instance A, Error node vE
Output: SAFE or UNSAFE
k = 0
loop

k = k + 1
Ik = Ck-reduced IFDS instance of A

I∞k = C∞
k -reduced IFDS instance of A

if DemRHS(Ik)(vE) 6=⊥ then return TRUE
if DemRHS(I∞

k)(vE) =⊥ then return FALSE

THEOREM 7. [EXPSPACE-Hardness] The Demand-
AIFDS problem is EXPSPACE-hard, even when there
are no recursive synchronous calls.

3.3 Optimizations

We now describe two general optimizations that can be
applied to any AIFDS instance that reduce the number
of states explored by the analysis.

1. Effective Counting The first optimization is based
on two observations. First, the dispatch node is the
only node where the counter maps are “read” (have
any effect on the transfer function). At other nodes, the
counter map is either added to (for some asynchronous
calls), or copied over. Thus, rather than exactly propa-
gating the counter maps in the dataflow facts, we need
only to summarize the effect of a (synchronous) dis-
patch on the counter map, and use the summaries to
update the counter maps after each dispatch call returns
to the dispatch location. Second, between the time a
dispatch call begins and the time it returns, the counter
map values only increase due to asynchronous calls that
may happen in the course of the dispatch.

Thus, we summarize the effect of a dispatch on the
counter map as follows. Suppose that the counter map
at a (synchronous) callsite is c. For a call-to-start edge
to procedure p, for each entry dataflow fact for p, we
reset the counter map to c0 (all zeros) and only com-
pute the dataflow facts reachable from such reset con-
figurations. For each summary edge [28] for p with
the target counter map c′, we propagate the summary
edge at the callsite, by updating the counter map to:
λx.maxC(c(x) + c′(x)), where C is the counter be-
ing used in the reduced instance. The saving from this
optimization is that for each procedure, for each en-
try dataflow fact, we only compute summaries starting

Figure 5. Example Race

from the single reset counter map c0, rather than upto
|C||Dl||P | distinct counter maps.
2. Counter Map Covering The second optimization
follows from observing that there is a partial order be-
tween the counter maps. For two counter maps c, c′,
we say that c ≤ c′ if for all s, we have c(s) ≤ c′(s).
It is easy to check that if c ≤ c′, then for any in-
stance I , for all paths π, for all dataflow facts d ∈
Dg × Dl, the PF (I)(π)(d, c)⊆̇PF (I)(π)(d, c′). This
implies that we only need to maintain maximal ele-
ments in this ordering. Thus, the set of facts reachable
from c is covered by the facts reachable from c′, and
so in our implementation of RHS, when we find two
instances of the dispatch location in the worklist, with
facts (d, c) and (d, c′) with c ≤ c′, we drop the former
instance from the worklist.

4. Application: Safety Verification

We now describe how the ADFA algorithm can be ap-
plied to the task of safety verification, i.e., determining
whether in a given asynchronous program, some user-
specified error location vE is reachable.
EXAMPLE 8: Figure 5 shows a typical idiom in asyn-
chronous programs where different clients attempt to
write files to a device. The main function spawns an
asynchronous listen procedure that is nondeterminis-
tically called every time a new client joins on a socket.
The procedure then calls new client with a unique
gid or “group id” [6] which processes the request of
the individual clients. A critical mutual exclusion prop-
erty in such programs is that once a client, represented
by its gid, has “acquired” and thus begun writing to
the device, no other client should be given access until

the first client is finished. To ensure mutual exclusion,
many asynchronous programs use state-based mecha-
nisms like that in Race. The device is stamped with an
owner field that tracks the last gid that wrote to the
device, and a client is granted access if the owner field
is 0, indicating there is no current client writing to the
device. To verify the mutual exclusion, we encode the
property as an assertion by creating a (skolem) constant
k that represents some arbitrary client id, and checking
the assertion that whenever the device is written to in
write, that the id of the writer is k, then the owner

of the device is also k. Thus, the program satisfies the
mutual exclusion property iff the error location corre-
sponding to the label ERR is not reachable. 2

To perform safety verification, we instantiate the
general AIFDS framework with dataflow facts and
transfer functions derived via predicate abstraction [2,
14]. The result is a Demand AIFDS instance that we
solve using the DemADFA algorithm. If the MVP so-
lution for the error node is ⊥, then we can deduce that
the error location is not reachable. If the solution is not
⊥, then either the error location is reachable, or the
set of predicates is too imprecise, and we automatically
learn new predicates from the infeasible counterexam-
ple whose path function is not ⊥, using the technique of
[17]. We then repeat the verification with the new pred-
icates, until we find an execution that reaches the er-
ror location, or the location is proven to be unreachable
[4, 3, 18]. We now describe how to generate Demand
AIFDS instances for a safety verification problem by
describing the corresponding AIFDS instances.

4.1 Predicate Abstraction AIFDS Instances

A Predicate Abstraction AIFDS instance is a tuple A =
(G∗, Dg, Dl,M,u), where:
• G∗ is an asynchronous program,
• Dg is a finite set of global predicates, i.e., predicates

over the global program variables,
• Dl is a finite set of local predicates, i.e., predicates

over the local program variables,
• M(e) is the defined as the distributive closure of:

λ(dg, dl). {(d
′
g , d

′
l)|sp(e, dg ∧ dl) ∧ d′g ∧ d′l is satisfiable }

where sp(e, ϕ) is the strongest postcondition [9] of
ϕ w.r.t. the operation e,

• u is the set union operator.

This is slightly different from the standard formulation
of predicate abstraction [14], where the elements of
Dg and Dl are all the possible cubes over some set of
atomic predicates.

We can generate an AIFDS instance ARace

for the safety verification problem for Race

as follows. The set of global predicates is
{ow = 0, ow > 0 ∧ ow = k, ow > 0 ∧ ow 6= k},
where ow is an abbreviation for dev.owner,
and the set of local predicates is
{gid > 0, gid = k, gid 6= k, id = k, id 6= k}. With
these predicates, for example, the transfer function for
the edge dev.owner = 0 is the distributive closure
of λ(dg, dl).(ow = 0, dl), i.e., the global predicate
becomes ow = 0 and the local predicate remains
unchanged.

Figure 6 shows the result of the optimized De-
mand IFDS analysis for the C∞

1 reduced IFDS in-
stance of ARace. The grey box contains the global pred-
icate and the white box the local predicate. The num-
bers i,j,k,l above the boxes correspond to the counter
map values for (listen,>),(new client, gid >

0),(write, id = k) and (write, id 6= k) respectively.
Execution begins in main, with no pending asyn-

chronous calls, and proceeds to the dispatch location
where the global predicate ow = 0 holds, and the
only pending call is to listen. We analyze listen,
the only pending call from the dispatch call site 1,
from the counter map mapping all predicates to ze-
ros (p stands for any of the global predicates). The ex-
ploded supergraph for listen shows that an execution
of listen preserves the global dataflow fact, makes
an asynchronous call to listen, and may, if the call
to new gid is successful (i.e., returns a positive gid),
make an asynchronous call to new client with a pos-
itive argument. We plug in the summary edges from
listen into the dispatch call site 1 – the results are
shown with the dotted edges labeled L.

For each generated (i.e., “exploded”) instance of the
dispatch call site, we compute the results of dispatch-
ing each possible pending asynchronous call (together
with the input dataflow fact). Thus, at the dispatch call
site instance 2, there are pending calls to listen and
new client. Plugging in the summaries for listen,
we deduce that the result is either a self loop back to
dispatch call site 2, or, if another asynchronous call
to new client is made, then a dotted summary edge
to dispatch callsite 3 where there are ∞ calls pending

on new client because the actual value 2 obtained by
adding the effect 1 to the previous counter map value at
the call site gets abstracted to ∞ in the C∞

1 reduction.
Similarly, we plug in the summaries for new client

and write (shown in the respective boxes), for each of
the finitely many dispatch call site instances, resulting
in the successors corresponding to dotted edges labeled
N and W respectively. The call site instances 3, 5 are
covered by the instances 6, 7 respectively, and so we
do not analyze the effects of dispatches from 3, 5.

Notice that new client is always called with a pos-
itive argument, and that write is only called either
when both id and owner are equal to k or when nei-
ther is equal to k, and so the mutual exclusion property
holds.

4.2 Experiences

We have implemented the DemADFA algorithm along
with these optimizations in BLAST[18], obtaining a
safety verification tool for recursive programs with
asynchronous procedure calls. In our experiments, we
checked several safety properties of two event driven
programs written using the LIBEEL event library [6].
These programs were ported to LIBEEL from corre-
sponding LIBEVENT programs, and are available from
the LIBEVENT web page [21]. plb is a high perfor-
mance load balancer (appx 4700 lines), and nch is a
network testing tool (appx 684 lines). We abstract the
event registration interface of LIBEEL in the follow-
ing way. We assume that external events can occur in
any order, and thus, the registered callbacks can be ex-
ecuted in any order. In particular, this means that we ab-
stract out the actual times for callbacks that are fired on
some timeout event. With this abstraction, each event
registration call in LIBEEL becomes an asynchronous
call that posts the callback. While the predicate discov-
ery procedure implemented in BLAST[17] is not guar-
anteed to find well-scoped predicates in the presence of
asynchronous programs, we use it heuristically, and it
does produce well-scoped predicates in our examples.
We think a predicate discovery algorithm that takes
asynchronous calls into account is an interesting open
research direction.
Null Pointer. The first property checks correctness of
pointer dereferences in the two benchmarks. For each
callback, we insert an assertion that states that the ar-
gument pointer passed into the callback is non-null.
Usually, this is ensured by a check on the argument

in a caller up the asynchronous call chain. Hence, the
correctness depends on tracking program flows across
asynchronous as well as synchronous calls. The results
are shown in Table 1. There are 4 instances of these
checks for plb, namely, plb-1 through plb-4 and 2
for nch. The instances for plb are all safe. There is a
bug in one of the checks in nch where the programmer
forgets to check the result of an allocation. All the runs
take a few seconds. In each example, we manually pro-
vide the predicates from the assertions to BLAST, but
additional predicates are found through counterexam-
ple analysis.
Protocol State. plb maintains an internal protocol
state for each connection. The protocol state for an in-
valid connection is 0, on connection, the state is 1, and
the state moves to 2 and then 3 when certain operations
are performed. These operations are dispatched from
a generic callback that gets a connection and decides
which operation to call based on the state. It is an er-
ror to send an invalid connection (whose state is 0) to
this dispatcher. We checked the assertion that the dis-
patcher never receives a connection in an invalid state
(file plb-5). We found a bug in plb that showed this
property could be violated. The bug occurs if the client
sends a too large request to read, in which case the con-
nection is closed and the state reset to 0. However, the
programmer forgot to return at this point in the error
path. Instead, control continues and the next callback
in the sequence is posted, which calls the dispatcher
with an invalid connection.
Buffer Overflow. Each connection in plb maintains
two integer fields: one tracks the size of a buffer (the
number of bytes to write), and the second tracks the
number of bytes already written. The second field is
incremented on every write operation until the required
number of bytes is written. We check that the second
field is always less than or equal to the first (file plb-6).
The complication is that the system write operation
may not write all the bytes in one go, so the callback
reschedules itself if the entire buffer is not written.
Hence the correctness of the property depends on data
flow through asynchronous calls. BLAST can verify
that this property holds for the program. We model
the write procedure to non-deterministically return a
number of bytes between 0 and the number-of-bytes
argument.

Our initial experiences highlight two facts. First,
even though the algorithm is exponential space in the

Figure 6. Summaries for Race

Program Time Preds Total Dispatch
plb-1 3.05 7 2047 30
plb-2 4.10 16 1488 18
plb-3 7.05 20 1583 20
plb-4 5.290 14 1486 25
nch-1 1.32 4 521 27
nch-2(*) 0.440 0 - -
plb-5(*) 30.20 55 - -
plb-6 22.68 41 1628 22

Table 1. Experimental results. Time measures total
time in seconds. Preds is the total number of atomic
predicates used. Total state is the total number of
reachable “exploded” nodes. Dispatch is the number
of reachable “exploded” dispatch nodes. (*) indicates
the analysis found a violation of the specification.

worst case, in practice, the reachable state space as well
as the counter value required for convergence is small
(in all experiments k = 1 was sufficient). Second, the
correctness of these programs depends on complicated
dataflow through the asynchronous calls: this is shown
by the number of distinct global states reached at the
dispatch location.

5. Proof

The foundation on which our technique for solving
AIFDS is based is that the Ck- and C∞

k -reduced under-
and over-approximations actually converge to the C∞-
reduced instance, and therefore to the precise MVP
solution of the AIFDS instance. The main technical
challenge is to prove the completeness Theorem 4,
which, as outlined earlier, proceeds from the proof of
Lemma 1. We prove Lemma 1 in two steps. In the first
step (Lemma 3), we show that the backward solution
of the C∞-reduced IFDS instance is equivalent to the
upward closure of some finite number of facts. In the
second step (Lemma 4), we show how, from the finite
set of facts, we can find a k such that the C∞

k -reduced
instance coincides with the C∞-reduced solution.
Upward Closure. For two counter maps c, c′ from S

to C , we write c ≤ c′ if for all s ∈ S, we have c(s) ≤
c′(s). Let Dg ×Dl be a finite set of dataflow facts. The
upward closure of a set B ⊆ (Dg × Dl) × (Dl → C)
is the set

B≤ = {(d, c′) | ∃(d, c) ∈ B s.t. c ≤ c′}

We say B is upward closed if B = B≤.
The ordering ≤ on counter maps with a finite domain

is a well quasi-order, that is, it has the property that any
infinite sequence c1, c2, . . . of counter maps must have

two positions i and j with i < j such that ci ≤ cj

[8]. We shall use the following fact about well quasi-
orderings.

LEMMA 2. [1] Let f be a function from counter maps
to counter maps that is monotonic w.r.t. ≤. Let (f−1)∗

denote the reflexive transitive closure of the inverse
of f . For any upward closed set U of counter maps,
there is a finite set B of counter maps such that B≤ =
(f−1)∗(U).

Backward Solutions. For an IFDS instance I =
(G∗, D, {>},M,u) (where D may be infinite), for any
v′ ∈ V ∗ and d ∈ D, we define the backwards meet over
valid paths solution MVP−1(I , v′, d′)(v) as:

{d | ∃π ∈ IVP(v, v′) s.t. (d, d′) ∈ PR(I)(π)}

Intuitively, the backwards or inverse solution for v ′, d′

is the set of facts at v, which get “transferred” along
some valid path to the fact d′ at v′. If D is finite, we
can compute the inverse solution using a backwards
version of the RHS algorithm. It turns out, that if D

corresponds to the infinite set of facts for a C∞-reduced
instance of an AIFDS, then the infinite inverse solution
is equivalent to the upward closure of a finite set. Recall
that c0 is the map λx.0.

LEMMA 3. [30, 10] Let A = (G∗, Dg, Dl,M,u) be
an AIFDS instance, and I be the C∞-reduced IFDS
instance of A. For every v′ ∈ V ∗ and d′ ∈ Dg ×
Dl, there exists a finite set B(v′, d′, v) ⊆ (Dg ×

Dl) × (P × Dl → N) such that: B(v′, d′, v)≤ =
MVP−1(I , v′, (d′, c0))(v).

PROOF. Sketch. The proof relies on two facts: first, ≤
forms a well quasi-order on (Dg×Dl)×(P×Dl → N),
and second, that the dataflow facts and transfer function
for A is a monotonic function on this order. Intuitively,
the transfer function is not “inhibited” by adding el-
ements to the counter map. With these in mind, and
using Lemma 2, we can devise a backwards RHS algo-
rithm whose termination (shown in [10]) is guaranteed
by the well quasi-ordering of (Dg ×Dl)× (P ×Dl →
N) [8, 1] and guarantees the existence of the finite set
B(v′, d′, v). The backward RHS algorithm propagates
dataflow facts backward and creates summaries from
return points to corresponding call points.

An alternate proof of the above result is obtained fol-
lowing the proof in [30] which reduces the AIFDS in-

stance via Parikh’s lemma to a multiset rewriting sys-
tem and uses well quasi-ordering arguments on multi-
sets to guarantee termination. Parikh’s lemma is used
to replace the original program that may have recursive
calls with an automaton which has the same effect w.r.t.
counter maps.

In the the second step, we show that from the set
B(v′, d′, v), we can obtain a k, that suffices to prove
the Completeness Lemma 1.
Maxcount. Let A = (G∗, Dg, Dl,M,u) be an AIFDS
instance, and let I be the C∞-reduced (infinite) IFDS
instance of A. We define the maxcount of A, as:

1+max
⋃

d′,v′,v

{c(s) | (d, c) ∈ B(v′, (d′, c0), v), s ∈ S}

Note that as d′, v′, v range over finite sets Dg ×Dl and
V ∗ respectively, and from Lemma 3 B(v′, (d′, c0), v)
is finite, the maxcount of A is also finite.

We observe that if k is the maxcount of the AIFDS
instance, then if the fact d′ is not in the MVP solution
for v′ in the C∞-reduced instance then it is not in the
solution of the finite C∞

k -reduced IFDS instance.

LEMMA 4. Let A = (G∗, Dg, Dl,M,u) be an AIFDS
instance, with maxcount k, and I (resp. I ∞

k) be the
C∞- (resp. C∞

k -) reduced IFDS instances of A. For
every v′ ∈ V ∗ and d′ ∈ Dg × Dl,

(a) if (>, c0) 6∈ MVP−1(I , v′, (d′, c0))(v
s
main

)
then for all v ∈ V ∗, MVP(I∞k)(v) ∩
MVP−1(I , v′, (d′, c0))(v) = ∅

(b) if @c′. (d′, c′) ∈ MVP(I)(v′) then @c′. (d′, c′) ∈
MVP(I∞k)(v′).

PROOF. First, note that (b) follows from (a) by observ-
ing from the definitions of solutions and backwards
solutions that there exists a c′ such that (d′, c′) ∈
MVP(I)(v′) iff (>, c0) ∈ MVP−1(I , v′, d′), then in-
stantiating the universal quantifier in (a) with v ′, and
finally applying the fact that MVP−1(I , v′, (d′, c0)) is
upward closed (from Lemma 3). Next, we prove the
following statement which implies (a).

IH ∀n ∈ N, v ∈ V ∗,∀π ∈ IVP(vs
main

, v) of
length n, if (d, c) ∈ PF (I∞

k)(π)(>, c0) then
(d, c) 6∈ MVP−1(I , v′, (d′, c0))(v).

The proof is by induction on n. The base case follows
from the hypothesis that (>, c0) is not in the backwards
solution for v′, (d′, c0).

For the induction step, suppose the IH holds upto
n. Consider a path π = π′′, (v′′, v) of length n + 1
where the prefix π′′ is of length n. By the definition
of the path function, we know there exists a (d′′, c′′)
such that (1) (d, c) ∈ M(v′′, v)(d′′, c′′), (2) (d′′, c′′) is
in PF (I∞k)(π′′)(>, c0), and (3) therefore, by the IH,
that (d′′, c′′) 6∈ MVP−1(I , v′, (d′, c0))(v

′′).
We shall prove the induction step by contradiction.

Suppose that (d, c) ∈ MVP−1(I , v′, (d′, c0))(v
′′).

By Lemma 3, there is a (d, c∗) ∈ B(v′, d′, v),
such that c∗ ≤ c. Consider the countermap
bcc = λx.min {c(x), k + 1}. As c is a C∞

k counter,
and k is bigger than every element in the range of c∗
(it is the maxcount), it follows that c∗ ≤ bcc. Thus,
as backwards solutions are upward closed (Lemma 3),
(d, bcc) ∈ MVP−1(I , v′, (d′, c0))(v). By splitting
cases on the possible operations on the edge (v ′′, v),
we can show that that there exists a c′′∗ such that:
(i) (d, bcc) ∈ M(v′′, v)(d′′, c′′∗) and (ii) c′′∗ ≤ c′′. In
other words, (d′′, c′′∗) is in MVP−1(I , v′, (d′, c0))(v

′′).
By the upward closure of the backwards solu-
tion, (d′′, c′′) ∈ MVP−1(I , v′, (d′, c0))(v

′′),
thereby contradicting (3) above. Hence,
(d, c) 6∈ MVP−1(I , v′, (d′, c0))(v

′′), completing
the proof of IH and therefore, the lemma.

We can now prove Completeness Lemma 1.

PROOF. (of Lemma 1). Suppose that there exists a
c such that (d, c) ∈ MVP(I)(v). Then there exists
some path π ∈ IVP(vs

main
v,) such that (d, c) ∈

PF (I)(π)(v). Picking the length of π as kd,v suffices,
as for all k greater than this kd,v we can prove that,
(d, ·) ∈ MVP(Ik)(v), and from Theorem 3, (d, ·) ∈
MVP(I∞k)(v).

Suppose that there is no c such that (d, c) ∈
MVP(I)(v). If we let kd,v be the maxcount of A, then
Lemma 4 shows that there is no (d, ·) ∈ MVP(I ∞

k),
and from Theorem 3, there can be no (d, ·) ∈
MVP(Ik).

This concludes the proof of correctness. Notice that
while the correctness proof relies on several technical
notions, these can all be hidden from an implementer,
who only needs to call an interprocedural dataflow
analysis algorithm with appropriate lattices.

6. Conclusion

We believe that our AIFDS framework and algorithm
provides an easy to implement procedure for perform-

ing precise static analysis of asynchronous programs.
While theoretically expensive, our initial experiments
indicate that the algorithm scales well in practice. Thus,
we believe the algorithms presented in this paper open
the way for soundly transferring the dataflow analy-
sis based optimization and checking techniques that
have been devised for synchronous programs to the
domain of asynchronous programs, thereby improving
their performance and reliability.

References
[1] P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuan

Tsay. General decidability theorems for infinite-state
systems. In LICS 96, pages 313–321. IEEE Press,
1996.

[2] T. Agerwala and J. Misra. Assertion graphs for
verifying and synthesizing programs. Technical
Report 83, University of Texas, Austin, 1978.

[3] T. Ball and S.K. Rajamani. The SLAM project:
debugging system software via static analysis. In
POPL 02: Principles of Programming Languages,
pages 1–3. ACM, 2002.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
CAV 00: Computer-Aided Verification, LNCS 1855,
pages 154–169. Springer, 2000.

[5] R. Cunningham. eel: Tools for debugging, visualiza-
tion, and verification of event-driven software, 2005.
Master’s Thesis, UC Los Angeles.

[6] R. Cunningham and E. Kohler. Making events less
slippery with Eel. In HotOS-X, 2005.

[7] G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards
the automated verification of multithreaded Java
programs. In TACAS 02, LNCS 2280, pages 173–187.
Springer, 2002.

[8] L.E. Dickson. Finiteness of the odd perfect and
primitive abundant numbers with r distinct prime
factors. Amer. Journal Math., 35:413–422, 1913.

[9] E.W. Dijkstra. A Discipline of Programming. Prentice-
Hall, 1976.

[10] M. Emmi and R. Majumdar. Decision problems for the
verification of real-time software. In HSCC 06, LNCS
3927, pages 200–211. Springer, 2006.

[11] J. Esparza. Decidability and complexity of Petri net
problems –an introduction. In Lectures on Petri Nets
I: Basic Models, LNCS 1491, pages 374–428. 1998.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesC language: A holistic approach
to networked embedded systems. In PLDI 2003:
Programming Languages Design and Implementation,
pages 1–11. ACM, 2003.

[13] G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand,
enlarge, and check: New algorithms for the coverabil-
ity problem of WSTS. In FSTTCS 04, LNCS 3328,
pages 287–298. Springer, 2004.

[14] S. Graf and H. Saı̈di. Construction of abstract state
graphs with PVS. In CAV 97: Computer Aided
Verification, LNCS 1254, pages 72–83. Springer, 1997.

[15] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA 03: Object-
Oriented Programming, Systems, Languages and
Applications, pages 388–402, 2003.

[16] T.A. Henzinger, R. Jhala, and R. Majumdar. Race
checking by context inference. In PLDI 04: Program-
ming Languages Design and Implementation. ACM,
2004.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L.
McMillan. Abstractions from proofs. In POPL 04:
Principles of Programming Languages, pages 232–
244. ACM, 2004.

[18] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. In POPL 02: Principles of Program-
ming Languages, pages 58–70. ACM, 2002.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M.F. Kaashoek. The Click modular router. ACM
Transactions on Computing Systems, 18(3):263–297,
2000.

[20] Libasync. http://pdos.csail.mit.edu/6.824-2004/async/.
[21] Libevent.

http://www.monkey.org/%7Eprovos/libevent/.
[22] B.D. Lubachevsky. An approach to automating the

verification of compact parallel coordination programs
i. Acta Informatica, 21:125–169, 1984.

[23] The mace project. http://mace.ucsd.edu/.
[24] B. McCloskey, F. Zhou, D. Gay, and E. Brewer.

Autolocker: Synchronization inference for atomic
sections. In POPL ’06: Principles of programming
languages, pages 346–358. ACM, 2006.

[25] V.S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In Proc. USENIX
Tech. Conf., pages 199–212. Usenix, 1999.

[26] Rohit Parikh. On context-free languages. J. ACM,
13(4):570–581, 1966.

[27] G. Ramalingam. Context-sensitive synchronization-
sensitive analysis is undecidable. ACM TOPLAS,
22(2):416–430, 2000.

[28] T. Reps, S. Horwitz, and M. Sagiv. Precise inter-
procedural dataflow analysis via graph reachability.
In POPL 95: Principles of Programming Languages,
pages 49–61. ACM, 1995.

[29] M.F. Ringenburg and D. Grossman. Atomcaml: first-
class atomicity via rollback. In ICFP 05, pages 92–
104, New York, NY, USA, 2005. ACM.

[30] K. Sen and M. Vishwanathan. Model checking
multithreaded programs with asynchronous atomic
methods. In CAV 06, LNCS 4314, pages 300–314.
Springer, 2006.

[31] M. Sharir and A. Pnueli. Two approaches to inter-
procedural data dalow analysis. In Program Flow
Analysis: Theory and Applications, pages 189–233.
Prentice-Hall, 1981.

[32] N. Zeldovich, A. Yip, F. Dabek, R.T. Morris,
D. Mazières, and M.F. Kaashoek. Multiprocessor sup-
port for event-driven programs. In USENIX Technical
Conference, pages 239–252, 2003.

