State of the Union:
Dependent Type Inference via Craig Interpolation

Ranijit Jhala Rupak Majumdar Ru-Gang Xu
CSE Department, UC San Diego CS Department, UC Los Angeles CS Department, UC Los Angeles
jhala@cs.ucsd.edu rupak@cs.ucla.edu rxu@cs.ucla.edu
Abstract The predicates for the different subtypes are pairwiserisistent.

Before performing a downcasit€., accessing the union), the pro-
grammer tests the tag fields to ensure that the corresposding
types’ guard predicate holds, and similarly before perfogran
upcast i.e., constructing the union), the programmer sets the tag
field to ensure the guard predicate holds.

We formalize this idiom in a dependent type system compris-
ing two ingredients. The first ingredient is a type hierarchyre-
sponding to a directed tree of types, where the nodes camedsp
types, and children to immediate subtypes. The seconddiggres
apredicated refinemerdf the hierarchy, where we label the edges
of the type hierarchy tree witbdge predicatesver the fields of the
structure that are true when the supertype can be safelydsito
the subtype corresponding to the target of the edge, anccsely,
must be established when the subtype is upcast to the spperty
By requiring that the edge predicates for the differentdrieih of a
supertype be pairwise inconsistent, we ensure that thersiigmle
subtype of which the supertype is an instance at runtime.

Given a predicated refinement for the subtype hierarchy ef th
] program, we can statically type check the program by vergfyi
1. Introduction that at each occurrence of an upcast or downcast, the edde pre

We present a type system for statically checking the safetgwn- icate for the (;]ast holcgs. Thc()jufgh thh_ere are several statiiozer
casts in imperative programs, and a novel technique forrinfg tion engines that can be used for this purpose, we presemtaesi

dependent types based on Craig Interpolation. Our typesyist syntax-directedystem that is scalable, captures the idiomatic ways
motivated by the problem of checking the safety of union sses in which programmers test fields, and concisely speuflesepef

in C programs. C programmers extensively use unions to encod Programs thatare accepted by our type system. The techotse
disjoint sum types in an ad-hoc manner. The programmer bhges t verts ‘h‘% programs to SSA form, and.thmnjomstlhe statements
value of a tag fieldto determine which element of the union an dominatingeach cast location to obtaincast predicatéhat is an
instance actually corresponds to. For example, Figure Wshet- invariant at the cast Iocatlpn. Our type cheqklng algorllmenl-
working code that manipulates packets represented as ai€ str f'ﬁs that ﬁt I?jactt] cast Iocaélon_ the edge E)jredlcatehcorkreﬁmrtd
ture fpacket) which contains a unionigmp_hun) to represent dif- t edc.ast ho I'S yhuSIr:jg a e(:,j|§|on procedure to check t

ferent types of packets. The packet is interpreted parameter ~ Predicatampliesthe edge predicate. . .
message (fieldh_gwaddr) when the fieldicmp_type = 12, as a We gllmlnate the burdgn of explicitly prpwdlng Fhe predis
redirect message (fieldh_pptr) when the fieldicmp_type = 5, type refinement, by devising a new technique to infer depende
and as anunreachablemessage (fieldh_pmtu) when the field types via Craig Interpqlatlon. To mffer thg reflngment, wetfgen-
icmp_type = 3. This ad-hoc protocol determining the mapping erate a system gbredicate constraintsvith variables represent-
between tag values and the union elements is informally docu N9 the unknown edge predicates. The predicate constrimirte
mented in the protocol description, but not enforced by gt the solutions for the variables to have the key propertiesdufe
system. The absence of static checking for the correctrfess-o Predicates, namely: (1) that they be over the fields of thegire,

cesses is a common source of subtle bugs due to memory corrup{2) that the edge predicates for the subtypes be pairwismsis-
tion. tent, and, (3) that the edge predicates hold at each cadt peirat

The problem of checking the safety of union accesses is an in- €&ch (up- or down-) cast point, the cast predicate impliestige

The ad-hoc use of unions to encode disjoint sum types in C pro-
grams and the inability of C’s type system to check the safeofis
these unions is a long standing source of subtle bugs. Wengres
a dependent type system that rigorously captures the ag+bta-
cols that programmers use to encode disjoint sums, andlintso

a novel technique for automatically inferring, via Craigempola-
tion, those dependent types and thus those protocols. liicadd

to checking the safe use of unions, the dependent type iatiwm
inferred by interpolation gives programmers looking to ifpadr
extend legacy code a precise understanding of the conslitioder
which some fields may be safely accessed. We present an eahpiri
evaluation of our technique on 350KLOC of open source C code.
In 80 out of 90 predicated edges corresponding to approrimat
1500 union accesses, our type system is able to infer theatate-
pendent types. This demonstrates that our type systemreaftod
explicates programmers’ informal reasoning about uniaitsout
requiring manual annotation or rewriting.

stance of the more general problem of checking the safetpwh- predicate. . - .
castsin a language with subtyping —we can consider each possi- 10 SOIve these constraints, we observe thafpiiewise Craig
Interpolantfor a sequence of formulads, ..., A, that are pair-

ble “completion” of a structure with the different elemewfsthe L : g N A .
union as subtypes of the structure, and we can view uniorsaese ~ Wise inconsistent, is a sequence of formulas. .. , A, such that:

as downcasts to the appropriate completion. At run-timeh émax (a) eachA; contains variables that occur in all of, ..., A,
stance of a supertype corresponds to an instancm@fofits im- (b) each pairA;, A; is inconsistent, and, (c) each; implies A,.
mediate subtypes. To ensure safety, programmers typiaatp- Pairwise Craig interpolants are guaranteed to exist fairsbgely

ciate with each subtype, guard predicateover some tag fields. enumerable theories, and can be efficiently computed foy i

ories of practical interest [22]. Note that the properti@gs(b) and Our type system is closest to the type systems in [1] and [20].
(c) of interpolants correspond directly to the requireragi),(2) The type system in [1] only tracks the evaluation of ML-style
and (3) of the edge predicates. We show that a predicatedrefin pattern-matching statements. Our type system tracks sigras
ment exists iff for each type, the cast predicates for it$ypés are ments and conditionals dominating the access. In [20], titleoas
pairwise inconsistent. Thus, to solve the predicate caimt, and consider the problem of identifying record types and guardis-

infer the (dependent) predicated refinement, we computedbe joint unions in COBOL programs. However, both approachés in
predicates for the subtypes of each type as the pairwispoitats types by using a dataflow analysis to track equalities betwee-
of the cast predicates for the subtypes. ables and constants appearing in branch statements. Inahany

We have implemented the predicated subtype inference algo- experiments we have found that this simple language of guard
rithm for the C language, and used it to infer the edge préefica insufficient (because, for example, programmers use gudriie
for subtype hierarchies obtained from unions, for a varigtypen form tag > 5).
source C programs totaling 350K lines of code. We empiricall
show that our inference algorithm is effective. In 80 out @f®ed- .
icated edges (corresponding to approximately 1500 unicessc 3. Overview

points), our algorithm finds the correct predicate guardsighwe We now give an overview of our dependent type system and our

manually verified a posteriori). technique for using interpolation for inference, by shayiow we
automatically infer the predicates that determine how thieruof

2. Related Work the example in Figure 1 is used. In particular, we show hownfie i

the predicated type refinement that captures the inforntaition
that the packet can be interpreted gmeametemmessageie., the
ih_pptr field can be accessed) when the figtthp_type = 12, as
aredirectmessagei .,theih_gwaddr field can be accessed) when
the fieldicmp_type = 5, and as amnreachablemessageif.,the
ih pmtu field can be accessed) when the figtshp_type = 3.

The type system has two ingredientsudotype hierarchgorre-

Language support. Functional programming languages like ML
and Haskell provide disjoint sum types within the langualjee
Cyclone language [19] provides mechanisms such as sumayypes
subtyping within C, allowing safer programs to be writterthin a
C-like language. Our goal on the other hand is to check fog saf
usage in a large body of legacy code written in C. Moreover, ou

te.ch’fnques are also useful in low level codg where bytesti‘m‘f sponding to a set of (simple) types and a subtyping relatiod,a
wire” must be cast to proper data types (as in networkingcode e gjicate refinementf the subtype hierarchy that specifies when a
Static analysis.There is a large body of recent work on statically supertype can be downcast to a subtype.

proving properties of C programs (augmented with addingiman
checks) to make them execute safely [3, 21, 14, 8, 3]. CC@4{d [
performs a pointer-kind inference and adds runtime chexksake

C programs memory safe. However, CCured leaves open the ques
tion of statically checking proper usage of unions or dovsteaf
pointers: either putting in additional tags or removingams al-
together and replacing them with structures. The formértigie
ignores checks the programmer already has in place, tiee tath-
niqgue may not work for applications such as network packet pr
cessors where the data layout cannot be changed. Runtimétyp
formation has been used for bug finding and providing delmgygi

information for bad casts or union access [21], but the grice which correspond, respectively to instancegpatket where the
problem has not been studied. Identifying correct use atgpées union field is actually ah_gwaddr, ih pptr Of ih pmtu. Thus, as

in the presence of memory layout and casts has been studied in

y shown in Figure 1(b), each of the (simple) subtypes is a &irec
[strggé):r'ggﬁ\éig é?%i%gg:;é@tems do not correlate guares containing all the fields of the supertypecket together with the

extra field from the union. In this setting, < ¢ if the fields oft
Dependent typesThere is a large body of work in dependent types form a prefix of the fields of'.

[30, 28, 16, 29]. There are several recent attempts to adehdiept
types within a programming language. For example, Xana8li [2
and ATS [6] provide expressive dependent types within time la
guage and can express more general program invariants tbdn p
icated unions. Similarly, the predicate subtyping schefmB\(S
[25] is more general than our system. However, all theseepyst
requires interactive theorem proving as the type systerorbes
undecidable. By restricting our target properties and pst@ate-
gies, we provide an automatic mechanism. Closer to our &,
provides dependent record types to encode safety propeuich
as array bound checks and null pointer dereferences. Tleesea)

Ingredient 1: Subtype Hierarchy. A (simple) typés either a base
type int or bool, or astructurewhich is a list of pairs of field
names and their (simple) types. For two (simple) tyheswe say
t' < t, ort' is asubtype oft if ¢ is a prefix oft’. A Subtype
Hierarchy is a forest(T, E) where thenodescorrespond to a set
of (simple) typesrl’, and the set oédgest C T x T is such that
(t,t") € Eif t' is the immediate subtype ofi.e.,t’ < t and there
is not” such that’ < ¢” andt” < t.

Consider the structure definitions of the program of Figeg.1
We can “unroll” the union definitions to obtain three (simpteb-
types of the typ@acket, namelyredirect, param andunreach,

Safe Unions via Safe Downcast$Ve reduce the problem of check-
ing the safety of union accesses to checking the safetgwhcasts

in our system by converting each union access into a dowmnaast
the subtype containing the particular union field being ssed,
followed by a standard field access on the subtype. Figurg 1(c
shows how the converted version of the program of Figure, 1(a)
with all union access replaced with explicit downcastsofektd by
field accesses, at statemedfs09, and11. Next, we see how tre-
finethe subtype hierarchy to enable the static checking of tletysa

of downcasts and thus, union accesses.

systems require annotations at the basic block level to theek Ingredient 2: Predicated RefinementWe say tha(T), E, ¢) is a
programs. Our inference algorithm is based on interpajadieci- predicated refinementf the subtype hierarch{f’, E) if ¢ is a map
sion procedures [22] and can automatically infer depentigre from the edgesF to first-orderedge predicatesuch that:

information based on visible variables. ,) ,
The type system of [15] infers dependent types for represgnt ~ R1 For each edggt, t’) € E, the edge predicatg(t,¢') has one

ML values passed to C programs through the foreign language i free variablechis that refers to a structure of type
terface. They infer types via a dataflow analysis that useeeific R2 For each nodé¢ € T, for each pair of its childrer’, " the
lattice of facts derived from the OCAML foreign function ént predicatess(t,t’) and¢(t,t”) are inconsistent,e., (¢, t') A

face, unlike our algorithm, which infers generic predisate o(t,t") is unsatisfiable

struct packet{
u_char icmp_type;
u_char icmp_code;
u_short icmp_cksum;
union {
int ih_gwaddr;
short ih_pptr;
short ih_pmtu
} icmp_hun;

packet

u_char icmp_type;
u_char icmp_code;
u_short icmp_cksum;

type packet =
s{(icmp_type,int), (icmp_code,int),
(icmp_cksum,int), (icmp_hun,void)};
type redirect =
s{(icmp_type,int), (icmp_code,int),
(icmp_cksum,int), (ih_gwaddr,int)};
type packet =
s{(icmp_type,int), (icmp_code,int),
(icmp_cksum,int), (ih_pptr,int)};
type packet =

}; - . . .
I . s{(icmp_type,int), (icmp_code,int),
00 int type, dest: c?de, (icmp_cksum,int), (ih_pmtu,int)};
01 struct packet icp; icmp_type =5 icmp_type = 3
02 . . o : 00 int type, dest, code;
03 type = icp.icmp_type; 01 packet icp;
04 if (type == 5) { icmp_type = 12 02 ’
05 icp.icmp_hun.ih_gwaddr = dest 03 (int)type := (int)((packet)icp).icmp_type;
06 } redirect parameter unreachable 04 if ((int)type = 5) then
07 else { u_char icmp_type; | [u_char icmp_type; | |u_char icmp_type; > yp_ .) .
08 if (type == 12) { u_char icmp_code; | |u_char icmp_code; | |u_char icmp_code; | 05 (int) ((redirect)icp) .ih_gwaddr := (int)dest;
yp u_short icmp_cksumj | u_short icmp_cksumj |u_short icmp_cksumj]l (07 else
09 icp.icmp_hun.ih_pptr = 0; int ih_gwaddr; int ih_pptr; int ih_pmtu; 08 if ((int)type = 19)
10 code = 0; A . . o
11} else if (type == 3) { ‘1’2 823 (Egg:réﬂegér>lcp>-1h_pptr = 0;
15 icp.icmp_hun.ih_pmtu = 0; 11 else if ((int)type = 3)
14 ¥ 12 (int) ((unreachable)icp) .ih_pmtu := O;
13 else ...

Figure 1. (a) ICMP Example
casts explicated

In this case, we refer t(T’, E, ¢) as aPredicated Subtype Hierar-
chy.

We use the predicate refinement to statically check theysafet
of downcasts and thus, union accesses. Intuitively, the eded-
icate ¢(t,t’) specifies the conditions under which a value of the
supertypet actually corresponds to an instance of typand can
be safely downcast. Before performing a downcast,@ccessing
a union field) the programmer must determine which downaast i
safe by determining which of the edge predicates of the inated
subtypes holdsR1 ensures these predicates are degrfields of
the supertype, an&2 ensures that only one of them holds. Thus,
the edge predicates formalize and explicate the infornaiding
protocol” used by the programmer.

In Figure 1(b) each edge of the subtype hierarchy is labeled
with its edge predicate. For exampié, gwaddr field can be safely
accessed only after theacket structure has been downcast to a
redirect struct, which is permissible only when themp_type
field equalss. We now show howgivena predicated refinement
for a subtype hierarchy, we catatically checkhe safety of down-
casts.

3.1 Type Checking

Given a predicated subtype hierarol¥, E, ¢), a program is type
safe if the hierarchy meets requiremeRtsR2 and at each point
in the program where an expressiemnf typet is cast to the type
', we have: (1) eithet’ is a supertype of, i.e.,we have an upcast,
or, (2) ¢ is a subtype oft, i.e., we have a downcast, and (3) in
either case, the predicate obtained by substitutings with the
variablee in the edge predicaté(¢,t’) holds at that point. Thus,
to type check the program, the edge predicates must satibfyda
requirement:

R3 The edge predicaté(t,t") with this substituted withe must
hold at each program location where an expressi@down-
cast from a type to a subtype’, or upcast front’ to t.

Our type checking algorithm proceeds in three steps. Rifst,
use standard type checking to verify that each field access is
a field in the (simple) type of the expression, and that eash ca

(b) (Union) Subtype Hierarchy and Predid®Refinement

(c) Code translated to our core language with

conforms to the subtype hierarchye., is either an upcast to a
supertype or a downcast to a subtype. Second, we use a @ecisio
procedure to check that the edge predicates satisfy regents
R1,R2. Third, we perform a flow sensitive analysis to check that the
edge predicates hold at each upcast or downcast. We nowtsescr
the last step in detail.

Invariants. A typing judgment in our type system carries along
aninvariant in addition to the type environment. The invariant is
a predicate on the program state that is guaranteed to hoka: at
program point (for all program executions reaching thanfoi
A typing rule additionally transforms the invariant by adiglithe
effect of the current statement on the invariant. Intulivehe
invariant tracks the set of all facts that direaigminatea particular
statementij.e., the set of all program facts that are guaranteed to
be executed on all paths from the entry point of the function t
the program point. This captures the idiom that the tag fiédds
a union are checked in a conditional dominating the accefiseof
union.

In Figure 1(c), consider the implicit cast (at the union asge
from packet () to the redirect messagé) at line 05. The state-
ment05 is dominated by thehen branch at4 and the assignment
03, and so the invariant df5 is:

(icp.icmp_type = type) A (type = 5) 1)

Similarly, the invariants fof9 and11 are respectively:

(icp.icmp_type = type) A (type # 5) A (type = 12), and,
(icp.icmp-type = type) A (type # 5) A (type # 12) A (type = 3)

Thus, for each statemestwhere a downcast or upcast occurs,
we compute, using the constraints generated by the typeictgec
rules, the invariant at.

Checking using Access Predicatedzrom the invariant, we con-
struct anaccess predicate,(¢,t") by syntactically renaming all
local variables in the invariant to fresh names, and rengrttie
cast expression withhis. By replacingicp with this andtype
with a fresh, subscripted version, we have the access ptedic

o5 (packet, redirect):

)

To ensure that conditiorR3 is met, we use a decision
procedure[9] to check that at each downcasif ¢ to a subtype
t', or upcast oft’ to ¢, the access predicatg; (¢,t') impliesthe
edge predicate(t,t’). So, for the downcast afcp from packet
to redirect at line 05, we use a decision procedure to check the
validity of the implication:

this.icmp_type = type; A type; =5

this.icmp_type = type, Atype; = 5 = (this.icmp_type = 5)

In the given code snippet, at each downcast statement (#nere
no upcasts), the access predicate implies the corresgpedige
predicate and so we conclude that the program is type safe.

3.2 Type Inference via Craig Interpolation

Given a subtype hierarchy and a program, tifpe inferencerob-
lem is to find a predicated refinement of the subtype hieratichty
suffices to type check the program, if one exists. Thus, thblem
is to infer the edge predicatéss., the mappingp from E to pred-
icates that satisfies requiremeft$,R2 andR3, and thus ensures
that the program type checks.

For a subtype hierarchyT, E), let the cast predicate for
(t,t") € E, written(¢,t"), be the disjunction of all access pred-
icatesiys(t,t') over all program statementswheret is downcast
tot’, ort’ is upcast ta. For the typepacket andredirect, there
is a single cast, so the cast predicgéigacket, redirect) is just
o5 (packet, redirect) shown in formula (2).

Using a decision procedure we check that for each pair of
immediate subtypet andt” of a typet that«(t,t') A (¢, t")
is unsatisfiable. If not,e.,if the conjunctions of the cast predicates
is satisfiable, there exists a pair of program executionsvfach
the same type is downcast or upcast from two different s@styp
which cannot be distinguished by the generated invariams,so
we conclude that there is no suitable predicated refinement.

Instead, suppose that we have found the conjunction of all th
pairs cast predicates to be unsatisfiable. As the predigdtes’)
contain local variables, they do not satisfy the requirentbat
predicates are exclusively over the fields of the supertypeget
predicates over the supertype fields, we inserpolation[5].

Pairwise Interpolants. Given a sequence of predicates
A1,..., A, such that for allz,j, the predicated; A A; is
unsatisfiable, apairwise interpolant for the sequence is the

sequencels,..., A, = ITP(A,..., A,) such that:

I1 For eachi, the variables ofi; occur in each ofd1,..., An,
12 For each pait, j, the predicatel; A A; is unsatisfiable, and,
I3 For eachi, the implication4; = A, is valid.

If predicates are over theories of equality and arithmetiter-
polants can be computed from theof of unsatisfiabilityof con-
junctions of two predicates [22].

To infer appropriate edge predicates we compute the parwis
interpolant for the sequence of cast predicates for the idste
subtypes oft. Thus, if the immediate subtypes of a typeare
t1,...,tn, then:

o(t,t1), ..., 0t tn) = ITP((L,t1),. .., 0 (¢t tn))

As the conjunction of the pairs of cast predicates is urfszaiie,
the interpolant is guaranteed to exist. Due to the renanttiegonly
variable in common to the differemt; predicates ishis. Con-
dition 11 implies that the interpolants, and thus, the inferred edge
predicates are ovethis and fields that are reachable frathis,
i.e., fields of the structure, thus enforcing requiremeiR1. Con-

the different immediate subtypes are unsatisfiable, thésr@ng
requiremenR2. Finally, I3 ensures the cast predicate implies the
inferred edge predicate

In our example, the cast predicatggpacket,redirect),
1 (packet, param) andy (packet, unreach) are respectively:

this.icmp_type = typeys A typegs = 5,
this.icmp_type = typeys A typegs # 5 A type;, = 12, and,
this.icmp_type = type;, A type;, # 5 Atype;, # 12 A type,, =3

These cast predicates are pairwise unsatisfiable, and somwe ¢
pute the edge predicates:

¢(packet,redirect), ¢(packet, param), ¢(packet, unreach)
as the pairwise interpolant of

1(packet, redirect), ¢)(packet, param), ¢)(packet, unreach)
which yields the edge predicates:

this.icmp_type = 5, this.icmp_type =12, this.icmp_type =3

3.3 Soundness via Checking Upcasts and Downcasts

In order to ensure soundness, our type system ensures that th
edge predicates hold both at upcasts and at downcasts. Whgee
checks are necessary at both places, consider the unsafiplexa
shown in Figure 2, which is a version of the ICMP fragment
from Figure 1 where additionally (linest—X1) an instance of the
subtyperedirect is created (corresponding to the creation of a
packet instance where the union element isidngwaddr), which

is then upcast to the supertypecket. The program is unsafe, as
the “wrong” tag value is written in lin&2 (or, depending on ones
point of view, the wrong values are checked further down).

Our type system catches this, because we check (resp. infer)
the edge predicates using (resp. from) the access preslieate
downcastsand upcastsin this unsafe example, the cast predicate
1(packet, redirect) is

(this.icmp_-type = 12 A this.ih gwaddr = ...)
Vv
(this.icmp_type = typeys A typegs = 5)

where the first disjunct comes from the access predicatecdine t
upcast on line&k1 and the second disjunct comes from the access
predicate due to the downcast on liog. The cast predicate for
1 (packet, param) is the same as before. However, the cast pred-
icates for the two immediate subtypesdirect and param are
consistenti.e.,their conjunction is satisfiable, and so, no predicate
refinement can be inferred, and our type system rejectsribiggm
as unsafe.

Intuitively, the soundness of our type system follows frdma t
following observations. First, we ensure that every newcstire is
a “leaf” of the type hierarchy. Thus, at run time, any insetitat
is ever downcast from, must have been upcast to at some point i
the past. Second, our type system ensures that the tag fieldsta
altered, and therefore, any edge predicate that held afpitestiin
the past, will continue to hold till the downcast. Thus, bycking
the edge predicates at upcasts, and by requiring that eddiates
for sibling edges be pairwise inconsistent, our type systagures
there is a unique subtype that each supertype value is anaest
of (and therefore, can be safely downcast to), namely theysab
whose edge predicate holds at the downcast point.

4. Language and Type System

We formalize our approach with a core imperative languagé wi
simple types. We first describe the language, then defineaperd
dent type system, and finally, present our type checkingritfgo.

dition 12 ensures that the pairwise conjunction of the predicates for Recall that C programs with unions can be translated intaccore

int type, dest, code;

packet icp;

redirect rp;

X4 (redirect)rp = new(redirect);
X3 (int) ((redirect) rp).ih_gwaddr
X2 (int) ((redirect) rp).icmp_type
X1 (packet) icp = (packet) rp;

02
03
04
05
o7
08

ey

12;

(int)type := (int) ((packet)icp).icmp_type;
if ((int)type = 5) then

(int) ((redirect)icp) .ih_gwaddr
else

if ((int)type = 12)
09 (int) ((parameter)icp) .ih_pptr := 0;
10 (int)code := 0;
11 else if ((int)type = 3)
12 (int) ((unreachable)icp) .ih_pmtu := 0;
13 else ...

:= (int)dest;

Figure 2. Unsafe version of ICMP

language as shown in Figure 1. In the converted programnunio
fields are accessed after casting the Ivalue down to theseilotyn-
taining the union. Thus, in our setting, the problem of cliegkhe
correct use of unions is reduced to that of checking the wafiet
downcasts.

4.1 Syntax and Semantics

For ease of exposition, we present the intraproceduraht@efree
case — our implementation, described in Section 6, handiés b
procedures and pointers.

Types. Figure 3(b) shows the types in our language. The set o
types include base typé®ol andint, and structure types where
each structure is defined by a list of fields that are pairs aball

[and a typet. We writevoid as an abbreviation for the typs }.
The set of types is equipped with a partial order: we#ay ¢, or

t' is asubtypeof ¢, if both ¢,¢" are structures and fields ofare a
prefix of the fields of’. Note that every structure type is a subtype
of void.

Lvaluesiv = (Ol]| ()
Expressiong = n|new(t)|lv]|ei1 De2
Booleanp = e1=ex|er~es
Statements = skip |lv:=e] s1;82

| if e then s1 else s2
| while pdo s1

(a) Expressions and Statements

Typest = int | bool | s{m1,...,my}
Fieldsm = (I,t)
Declarations tv

(b) Types and declarations

Figure 3. Syntax and Types: is an integer constant,a variable,
l astring label~e {<, >, <, >, #}, and® € {+, —}.

we extend the syntax witf-assignments:

Statements ::= ... | lv := ®(lv1, ..., lvn)

We assume that the program has first been transformed into SSA
form. We describe type checking and inference on progrartgsn
form.

Semantics.We define the operational semantics of the language
using a store and a memory in the standard way but additionall
taking into account the runtime type information [21]. Ws@ase
a store 3 mapping variables to values, a partial mappmgmory
M from addresses to values, and a partial mappingime type
information(RTTI) W from variables and addresses to types. For

¢ apredicate, we writeX, M, W = p to mean that the predicate

evaluates to true in the state definedhyM, W. When a structure

is created during execution using thew(¢) operation, it is tagged
with the (leaf) typet that remains with it during the remainder of
the execution. This value can be cast up or down along the path
from the leaft to the root typevoid, and intuitively, any attempt

to downcast it to a type not along this path leads the program i

a “stuck” state. We assume for simplicity that each base tghes
exactly one memory word. The (small step) operational séogn

Syntax. Figure 3(a) shows the grammar for expressions and state-is defined using a relatioft, M, W;s) — (X', M’,W';s). The

ments in our imperative language. Aralue [v is either an inte-
ger, structure or a field access, together with an explipi¢ tyast.
Thenew(t) statement creates a new structure of typend is used
to model allocation. For ease of exposition, in our language
ery Ivaluelv includes a type castt), label that specifies how
lv is interpreted. This captures explicit upcasts, downcaststhe
trivial cast to the statically declared type laf Arithmetic expres-
sions are constructed from constants and integer lvalueg asth-
metic operations. Boolean expressions comprise aritienoetin-
parisons. Statements asRip (or no-op), assignments, sequential
composition, conditionals, and while loops. A prograhis a tuple
(T,To, s) whereT is a set of typesl'o is a map from the program
Ivalues to their declared types, ands a statement corresponding
to the body of the program.

Static Single Assignment Form.For convenience in describing
the type checking and type inference rules, we shall asshate t
the programs are converted to static single assignment)(®&#A
[7], where each variable in the program is defined exactlyeonc
Programs in SSA form have speci&tassignment operations of
the formiv := ®(lv1,...,lv,) that capture the effect of control
flow joins. A ®-assignmentv := ®(lvy, ..., lv,) for Ivaluesiv,
lvi,...,lv, at a noden implies: (1)n has exactlyn predecessors
in the control flow graph, (2) if control arrives afrom its jth pre-
decessor, thetv has the valuév; at the beginning ofi. Formally,

rules take into account the RTW, and execution gets “stuck” if a
bad cast is made (i.e., an Ivalue is cast to a type incompatitth
its RTTI). We define the predical®F (X, M, W) which defines a
program state that is compatible with the runtime type imfa@tion,
i.e., for each variable or addregsthe value ofp (X(p) or M (p))
is a valid element of the typd/ (p). We write—"* for the reflexive
transitive closure of-. For storeX, memory M, RTTI W, and
statements, we say(X, M, W; s) divergesif there is an infinite
sequence(X, M, W;s) — (X1, M1,Wi;s1) — We say
(X, M, W;s) is stuckif (1) s is not skip, and (2) there is no
(X', M',W'; s") such that >, M, W;s) — (X', M',W';).

4.2 Predicated Refinements of Subtype Hierarchies

Programs in our language are type checked by the standandjtyp
rules dealing with booleans, integers and structures. Meweve
also want to show that each runtime downcast executes sately
do so, we shall assume we are givepredicated refinemerdf the
subtype hierarchy of the program.

Subtype Hierarchy. We represent the subtype hierarchy for the set
of typesT in a program as a directed forédt, E'), where the nodes
correspond to the typés correspond to nodes and there is an edge
(t,t') € Eiff t' is an immediate subtype ¢fi.e.,t’ < t and there

is not” different fromt andt’ such thatt’ < ¢” andt” < t. We
write N(t) = {t' | (¢,t") € E} for the set of neighbors (immediate

subtypes) of a typeé € T. We say that is aleaf typeif N(t) is
empty, i.e.t has no subtypes. We shall require that in our programs,
whenever a structure is created, it belongs to a leaf typee&se of
exposition, we shall assume that all casts in a program dvecka
neighbors: whenever a value of typis cast to’, eithert € N(¢')

ort’ € N(t). We can enforce this by converting the program to a
normal form by introducing temporary variables into thegreon

to hold the values at intermediate cast points.

Predicated Subtype Hierarchy.A predicated refinemendf a sub-
type hierarchy(T, E) is a triple(T, E, ¢) where¢ is a map from
edges inE to quantifier free predicates that satisfies properties
R1,R2 andR3 (Section 3).

Tag Fields.Thetag fieldsof a typet € T as:
tag(t,¢) = {I | 3t' <t :this.l occursing(-,t')}

The tag fields of a type are the fields that occur in the edge
predicates for any edge in the subtree rooted iat the subtype
hierarchy.

A predicated refinement captures the intuition that the ianog
mer performs a downcast fromto ¢’ only when a certain “tag”
condition on the fields of is met, and this tag condition is disjoint
from the conditions under which downcasts are made fraorsub-
types other that'. Our type system checks that the first time a leaf
type structure is upcast, the edge predicate for the steitinids,
and that subsequently, the fields occurring in the edge qaezlare
not modified. As this is done for all structures, and the edg€lip
cates for different downcasts are disjoint, we can stdyickdduce
that if the edge predicate for that subtype holds at the dastnc
point, the downcast is safe.

4.3 Type Checking using Predicated Refinements

This intuition is formalized in our type checking algorithtiat
takes a program and a predicated subtype hierarchy, araill
a three step process to check the safety of all the downcasts.

In the first step, we check that each access conforms to the sub
type hierarchy. This is standard type checking, where wanass
that all the casts are safe and use the explicated cast iafiomto
ensure that at each accegylv.l thatt is a supertype or subtype
of lv and that the field is indeed a field of the structute In the
second phase, we use a decision procedure (eaMgBRLEY[9]) to
check that the supplied type hierarchy meets requireniht&2.

In the third phase, we check conditi®&8 and also:

R4 That the tag fields of a structure are not modified.

We now describe the third phase in detail.

Checking the Edge PredicatesWe present a dependent type and
effect system that checks the edge predicates hold at eath ca
location. In addition, our type system ensures that the &lg<fi
are not updated after a type has been upcast from a leaf thige. T
together with the disjointness of the edge predicates, lesals

to statically type check the safety of downcasts using aipaéed
subtype hierarchy. Our type system is flow sensitive: judgme
carry aninvariantthat is updated with the effect of each statement.
An invariant is a predicate over program states. We assuatétth
function and atomic relation symbols appearing in the maeis
are interpreted by a decidable theory, and all validity &beare
done using a decision procedure for the theory.

Judgments.A judgmentin the type system for a statemenis of

the formT',¢,I + s > I'. The judgment states: using the edge
predicate map from the predicated subtype hierarctiy, £, ¢),

we can deduce that if the program begins execution from a stat
satisfying the type environmeiitand the preconditiod, the exe-
cution of a statement proceeds without getting stuck (cast errors)
and results in a state satisfying postconditién

The judgment uses auxiliary relations wheres the checked
type:T', ¢, I F. e : t to type expressions ardd, ¢, I +; [: t to
type Ivalues. These judgments state that under the typenasisuns
T" and using the edge predicate mapwve can deduce that the
expressiore (resp. the Ivaludv) has the type and there are no
type errors. Our syntax-directetkrivation rulesfor inferring type
judgments are shown in Figure 4. At each cast point, the rules
check, using a decision procedure, that the invariantsyirtip
corresponding edge predicate. In the figure, the queriese rad
the decision procedure are highlighted using boxes.

Derivation Rules: Invariants. Intuitively, the rules accumulate an
invariant consisting of all program facts that dominate dipalar
statementi(e., the set of facts that hold on every execution up to
a statement). The SSA form ensures that this set of facts form
an invariant,i.e., every execution to this program point satisfies
the formula. The rules for statements accumulate the iantgiby
conjoining the statements that dominate each cast point.

o Var-Assign for an assignment)z := e requires that the Ivalue
on the left hand side has the same type as the right hand side,
but strengthens the invariaftto I A = e thus capturing the
value flow due to the assignment.

Field-Assign for an assignment to a field.l := ¢ is similar
to the previous rule, but in addition ensures thatitlienot a
tag field ofiv, thus ensuring that the tag fields ar@ modified
after an upcast.

Assign-® checks that all the values being joined at thaode
have the same type as the Ivalue being assigned to.

Seq for sequencing combines the effects sequentially.

If collects additional facts in the then and else branchesgalo
the then branch, the new invariantiis\ p ensuringp holds;
along the else branch, the invariant/is\ —p. At the end of
the if statement, these additional facts are removed antethe
sulting invariant is agaid. Note that this loses path correlation
information.

e While combines the invariant with the loop condition inside the
body of the loop and throws away the effect of the loop body at
the end.

The SSA form is critical for ensuring that the formulas gagioe
in the invariantl are indeed guaranteed to hold before each state-
ment executes [18, 11], thus enabling sound type checkimgudh
there are more powerful techniques for generating invesjahe
method we use is highly scalable, essential for a type cheakd
it is syntax-directedhereby giving the programmer a clear spec-
ification of what programs will be accepted by the type system
Notice that the rules are syntax directed and thus essgntiatk
by traversing the AST of the program

Derivation Rules: Casts.The key rules are those pertaining to the
casting of Ivalues. The Ivalue rules check that the accesdiqate
implies the edge predicate for the corresponding d&3}.(The im-
plication checks, highlighted using boxes, are done usthgarem
prover [9]. For a predicaté and an Ivaludv, we write [this/lv]

for the predicate obtained by replacing all occurrence® afith
this.

* Var-Down allows a downcast only if the current invariant, when
substituted witlthis, implies the edge predicate for the down-
cast. The substituted invariant at this point is calledabeess
predicatefor that particular access, and thus, the rule permits
downcasts front to ¢’ only if the access predicate implies the
edge predicate (¢, t').

e Var-Up allows an upcast from subtypéto typet only if the
renamed invariant implies the edge predicaté, t). This rule
ensures that after thé instance iscreated at the first point at

which itis cast up to a supertypgit satisfies the edge predicate.

As the tag fields appearing in the predicate cannot change, an
as only one of the edge predicates of siblings can be trug, if a
some point in the future we know that the edge predicate still

holds, then the supertype instance must be the result of an upthat the downcast a&tis safe.

cast from at’ instance, and therefore it is safe to cast down to
t.

¢ Field-Down and Field-Up are analogous rules for field ac-
cesses.

¢ Var-Eq and Field-Eq handle the explicit trivial casts put into
the program.

SoundnessWe can show that a prograf = (7', o, s) is type
safe if there exists a predicated subtype hierar¢hyF, ¢) such
that using the rules we can derive the judgménte, true - s> -.
The type soundness theorem states the informal idea thigtyedt!
programs do not have unsafe casts.

THEOREM1. [Type Soundness]Let P = (T,T,s) be a pro-
gram and(T, E, ¢) be a predicated subtype hierarchy. Be(resp.
M) be an arbitrary store (resp. memory) such tNeE (X, M, T'g).

If To,,true + s > - then either(X, M,T'o;s) diverges or
(3, M,To;5) —* (X', M',W'; skip) andWF (X', M, W").

We use the initial typing environmeriif, obtained from the
static declarations in a program as the initial RTTI. We eitfihe
critical fact, proved in [18], that the invariant carriecbag) in a
judgment is an over-approximation of the set of the progrtates
before that statement is executed, that iEyif¢, true - s> I then
the invariantl is apostconditior{10] of ¢true w.r.t. to the statement
S.

LEMMA 1. [Invariant Generation [18]] Let P = (T,To,s)
be a program and T, E, ¢) be a predicated subtype hierarchy.
Let X (resp. M) be an arbitrary store (resp. memory) such that
WF(2, M, T). Let X/, M’, W’ be such that(>, M,To;s) —*
(X', M',W'; skip). If Do, ¢, true - s> I thenX', M’ W' = T.

The proof of the soundness theorem follows by using indactio
on the number of steps of the execution to show that thereare n
unsafe downcasts. Recall that each structure that is dréstef
a leaf type. Consider the first step at which an unsafe downcas
occurs. Prior to this step, the structure must have beenstipca
several times to an (ancestor) supertype that is not a lpaf fhe
type system ensures, that for each upcast (a) the edge gteétic
the upcast holds (via the lemma), and, (b) that the fieldsdretlye
predicate were not modified subsequent to the upcast. Waenev
a downcast front to ¢’ is performed, the disjointness of the edge
predicates ensures that only one of the immediate subtyuies
predicates is satisfied. As the fields in the edge predigéte’)
were not modified after the structure was previously updast,st
have been that at theost recentipcastp (¢, ¢') was true, in other
words, the instance being upcast was in fact of t§/péelhus, as
at the downcast point, our type system ensures (using thedm
that¢(t,t’) still holds, the structure can indeed be safely downcast
tot'.

ExampPLE 1: We will show that the downcast at lireein Fig-
ure 1 is safe. The type declaratidly mapsicp, type anddest

to packet, int and int respectively. At statement 3, the assign-
ment and variable access rules are applied, and the cadtdvare
ial, so no implication checks are done, but the invariéribe-
comesicp.icmp_type = type. We apply the conditional rule
for statement; inside the then brancHy is (icp.icmp_type =
type) A (type 5). In statemens, there is a downcast from
packet to redirect). To check the safety of this downcast, we
use theVar-Down rule onicp using the access predicate obtained

from I, by substitutingicp with this, and check the validity of:
(this.icmp-type = typeAtype = 5) = (this.icmp-type = 5)

As the theorem prover tells us this implication is valid, waclude
O

5. Type Inference via Interpolation

Inthe previous section, we assumed that we wgérena predicated
refinement of the subtype hierarchy with which the programiato
be type checked to ensure statically that all downcasts safe
In practice, these annotations are not available. We nogeptean
algorithm that given a program and the subtype hieram@impmat-
ically infersa predicated refinement of the hierarchy such that the
program type checks, if indeed the program is type safe.Herot
words, given a prograniT, I'o, s), the inference algorithm com-
putes an edge predicate maghat satisfies conditionR1-R4 or
reports that no such map exisit®.,the program is not type safe.
To find the predicate mag, we introduce for each edde ¢') in
E apredicate variabler, ;.. Next, using the syntax-directed type
checking rules, we generate a setpoédicate constraint®n the
predicate variables, such that a solution for the condtaiill give
us edge predicates that satisfy the three requirementally;iwe
describe how to solve the constraints and thus igfer

5.1 Generating Predicate Constraints

We use the syntax-directed typing rules of Figure 4 to gdaera
the predicate constraints. The constraint generationrig @ two
phases.

In the first phase, we make a syntax-directed pass over the
program to compute the set of fields th@nnot be tag fields
because they are modifieafter an upcast. This information is
captured by computing a mapag(¢) from typest to the sets of
fields that cannot be used in the edge predicates for dggsWe
start with an initial map corresponding to the empty set fidypes
t. Next, we do the type checking without making the implicatio
queries at the casts (as there is¢jo Instead, at each occurrence
of the Field-Assign rule (Figure 4), we add the fieldto tag(t"),
for all t” < ¢/, i.e., all subtypes of’. Intuitively, the assignment
implies that no such field can be used to distinguish whicthef t
subtypes of’ the structure is at runtime. At the end of this phase,
all the fields that cannot be tag fieldsicdre in the setag(t).

In the second phase, we make another syntax-directed pass
using the type checking rules to compute the invariants el ea
access point. For a predicafeand a set of field nameg, and
a location s, definerename(I, F, s) as the predicate where all
occurrences of free variables other thanthis are substituted
with a fresh namer; and all occurrences of field namésc F
are substituted with a fresh narhe At each downcast and upcast
location s, i.e., where one of the rule¥ar-Down, Field-Down,
Var-Up andField-Up (Figure 4) applies, instead of checking that
the access predicaféthis/lv] implies the edge predicate for the
cast, we introduce a predicate constraint:

rename(I[this/lv],tag(t),s) = m v

We call the LHS of the constraint above trenamed access
predicateat locations. The renaming does not get in the way of
inferring appropriatep as the fields intag(¢) cannot appear in
o(t,t"). Instead, as we shall see, it will force the inferred preisa
to not contain the fields imag(t), thus yielding ap that suffices
to type check the program, if one exists. Given a progfane
(T,To, s), letCons(P) be the set of predicate constraints generated
by the algorithm described above.

Recall that by our assumption that the only upcasts and down-
casts in the program are between immediate subtypes. This, t

constraint generation introduces predicate constraantsf,, for
Var-Down edgeq(t,t') € E.
Lo, Iy () ot/ EXAMPLE 2: The constraint generated from the downcast on line
T,é, 1 lv:s{-, (1), } 05 in Figure 1(a) is:
<t ‘ I[this/lv] = ¢(t,t) (typegs = this.icmp_type A typegs = 5) = Mpacket,redirect
T o 1r 0ol Field-Down Similarly, the downcasts on ling and12 generate constraints:
(typeyy = this.icmp_type A typeyy # 5 A typegg = 12) = Tpacket,paran
(type;, = this.icmp_type A type;, # 5 Atype;, # 12 A type;, = 3)

Tz)=t ¢ <t ‘I[this/m]:d)(t,t')

D)=t ¢ <t ‘ Ilthis/x] = ¢(t,t)

Var-U
T, o, 1H (t):c ¢ ar-Up . o = Tpacket ,unreach
Notice that the substitution renamesp to this and renames the
D6, T b tv: s{ (Lt), -} variabletype in each constraint. ad
t <t Ifthis/lv] = ¢(t,t') T, Ih lv:t Solutions.A solutionto a set of constraintSons(P) is a mapping
Field-U - " LvalE i i / i :
T o Th (Dol 1 ield-Up T T Fy (Dot val-Eq II from each predicate variabtg ;/ to a predicate such that
(a) Lvalues S1 Flor each pred.icate variabte ,-, the predicatdI(r, /) has a
single free variablehis,
T,é, 1k lv:t S2 For each triplet, t',¢"”, the predicatedI(m; /) and II(m /)
N RS Lval i i ’ ’
Tod It New(d) t " Togplbeloit o are inconsistent, - . -
S3 For each constraing; = ;4 in Cons(P), the implication
T,¢,IFce:int I,¢,1 ¢ e :int A s = II(m,) is valid, and,
T,¢,1Fc el @es:int P S4 For eacht,t’, the predicatdI(r;) should not contain any
field name intag(¢).
I, IFeey:t T,¢,IFces:t E Every solutionII for the set of constraint€ons(P), yields a
I,6,1Fee1 =es: bool q predicated subtype hierarchy fét with which we can prove the

safety of P.
¢, I e e :int ', I e ea:int
T.6,1Feo e ~ ez : bool Acomp THEOREM2. [Soundness of Constraint Generation]For every
program P = (T,To,s), if II is a solution for the constraints
Cons(P) then

(b) Expressions and booleans

&= At t').(my)

——— Ski .
T,¢,1F skipp> 1 P is such thatT'o, ¢, true - s > -.
The theorem follows by observing that, S2, andS4 enforce
g lbce:t Do lh(Hu:t Var-Assign that requirement®R1, R2 and R4 of the edge predicate map
T, IF)z :=e>IA(v=c¢) are met, and conditio83 ensuresR3, i.e., that the resultingp is
such that the implications required for type checking arkdva
Ty Ibee:t T,é1Fe (Dlvd:t The _predica?ed type system we have described_does not_have a
g Ih vt 1 ¢ tag(t,) _ _ principal typing property. Cops@er a structure W|th a tagdfit
Field-Assign and two physical subtypes with fielgs and f>. If fi is accessed

D¢ IE vl :=eb A (vl =e) only whent = 0, and f» is accessed only when= 5, then both

(t <2,t>2)and(t < 1,t > 1) are predicate refinements, but
L9, Iyl s tforalli T¢I lv:t neither subsumes the other.

Assign-$
T, ¢, I+ lv:=®(vy,...lu,) > T . . .
5.2 Solving Predicate Constraints
/ P T We now give an algorithm to find a solution to a set of constsain
Lolrsbl F’,d)’ ! ,,F] Seq Cons(P) if one exists. First, we define for each edget’) € F a
L¢ Ik sis> 1 cast predicate)(t, t') as:
', I e p:bool 'g/}(t, t/) = \/ Vs
I, IApEs>T T,¢,IN-ptks' >1" " Ys=m, 1 €Cons(P)
[,¢, I+ if p thenselses' > The cast predicate for an edge is the disjunction over alr¢he
named access predicatésfor the locations where &is downcast
[,é,IFep:bool T,¢,IApFs>IT tot’ or a1?’ is upcast td. Note that by the properties of disjunction
T 0.1 while p dos> I A—p While and implication, a mapl from the type variables to predicates is
e a solution for the constraintSons(P) iff it satisfies conditionsS1,
(c) Statements S2andS4 and in addition

Figure 4. Type checking rules. Hypotheses in boxes correspond to S3'For each(t, t') we havey(t,t') = TI(m, /).

queries to the decision procedure made in the checking pbase , ' i

the predicate constraints in the inference phase. For each), = m we havey = 1 (t, ') as the RHS cast predi-
cate is the disjunction of all the corresponding access qaiezby .

Thus, by the properties of disjunction and implication, aalution
11 satisfies requiremer®83’ iff it satisfiesS3.

Existence of a SolutionA solution can only exist if for each triple
t,t',t", the conjunctionp(¢,t') A 1 (¢,t") is unsatisfiable. If not,
i.e.,if there aret, ¢', ¢ such thatw(¢,t") A (¢, ") is satisfiable,
then for any candidate solution such thatt,t’) = II(m;)
andy(t,t'") = II(m;), the conjunctionI(m;) A (7)

is satisfiable, thus violatin@2 Intuitively, if the conjunction of
the cast predicates faf,t” is satisfiable, it means that there is
some condition under which the program casts to (or fromg typ
t' as well as to (or from})” thus one of those casts may be unsafe,
or depends on a modified fielek., a field intag(t). In this case,
the type inference fails with an error message pointing loaitivo
conflicting casts.

Constraint Solving via Interpolation. Dually, we show that if
for each triplet, t’, " the cast predicateg(t,¢') and (¢,¢") are
inconsistent, then we can infer a solution to the consisaiand
thus a predicated subtype hierarchy that suffices to typekche
the program. We construct the solution using a variant ofigCra
Interpolation [5]. Recall from Section 3.2, that given a\sence
of predicatesA, . . ., A, such that for alk, j, the predicated; A

Aj is unsatisfiable, pairwise interpolantfor the sequence is the

sequenceds, ..., A, = ITP(A4,...,A,) satisfying conditions
11,12, andI3.

For each node € T with immediate subtypes, ..., t,, we
define:

(1), ... TI(ttn) = ITP((E 1), ..., (t, tn))

The properties of pairwise interpolants suffice to show ffias
indeed a solution to the constraint®ns(P). The only variable
common toy(t,t1),...,%(t,tn) is this and hence, byl each
II(¢,t") contains the sole free variabtthis, thus enforcing re-
quirementS1 In addition, as we renamed all the fieldstag(t),
there is no field name ifag(t) that is in anyy(¢,¢') and thuslI
meets conditiors4. Propertyl2 of interpolants ensure requirement
S2 Finally, property3 of interpolants ensures requirem&g and
henceS3

By Theorem 2, we have inferred an edge mapand thus, a
predicated subtype hierarchy that suffices to show thagatkcare
safe. The inference algorithm runs in time linear in the nantdf
constraints, and thus, the program, and makes a lineardinite
of T') calls to an interpolating decision procedure.

Algorithm 1 PredTypelnference
Input: ProgramP = (T, T, s)
Output: Refinemen{T’, E, ¢) or ERROR
FE = edges induced by onT
C = Cons(P)
forall (¢,t") € E do
PY(t,t') = V{s | s = 0 € C}
forall ¢ e T with immediate subtypes, ..., t, do
if P(t, 1) A ... AY(t,tn) is unsatisfiabléhen
¢(t7 t1)7 ey ¢(t7 tn) = |TP(1/}(t,t1), s 7¢(t7 tn))
else
return ERROR
return (T, E, ¢)

We summarize the predicated type inference algorithm
PredTypelnference in Algorithm 1. The correctness of the algo-
rithm is stated in the following theorem.

THEOREM 3. [Correctness of Type Inference] For every pro-
gram P (T,To,s), PredTypelnference(P) terminates. If
PredTypelnference(P) returns(T, E, ¢) thenTo, ¢, true b s> -.

If PredTypelnference(P) returns ERRORthen there is nap such
thatT'o, ¢, true - s > -

ExamMPLE 3: For the constraints from Example 2, we get the cast

predicates:

typeys = this.icmp_type A typegs = 5

typegy = this.icmp_type A typeyy 7# 5 A typegy = 12

type;, = this.icmp_type A type,, # 5 A type,, # 12 A type,, =3
corresponding ta)(packet,redirect), ¢ (packet,unreach)

andi (packet, param), respectively. Note that the only common

names arechis and the allowed fields. The pairwise interpolant

of these predicates yields the edge predicatass.type 5,

this.type = 12 andthis.type = 3 respectively. ad

6. Implementation and Experiences

We have implemented the predicated type inference algorith
C. Our tool uses CIL [23] to parse and manipulate the C program
and the theorem proverdel [22] to generate interpolants and
check implications at cast locations. Our tool follows Aligom 1
and focuses on the safety of union accesses and explicé oast
fields. Also, our tool extends the invariant generation tadha
pointers and functions. Further, although our type systémics a
common C idiom, there are cases where this idiom is not fethw
Our system gracefully handles these issues by giving a fiestte
generate predicate edges when programmers follow the idiwin
by identifying cases where programmers do not follow theridi

6.1 Implementation Issues

We create a subtyping hierarchy to model union accessests ca
We add types representing each field in an union. If a strectur
contains a union.u with fields f;, we create a immediate subtype
t; representing the same structuréut only allowing access to
t.u.f;. In the implementation, access to the union field. f; is
the same as a downcast frarto ¢;.

We extend the invariants generation algorithm as descpbed
viously with pointers and functions. We shall informallysgeibe
our technique. For pointers, we run an flow-insensitivesatig
analysis and replace all pointer accesses with abstraatidos
guarded by predicatas., if a pointerp may point toa or b, we
replacexp = 5 with if (p = &) a = 5 else if (p = &b)

b = 5. In Figure 4, the typing rulesVar-Assign, Field-Assign,
Assign-®, If, While) conjoin predicates from the start of the sur-
rounding function. However, some functions that acceszaifip
union field are only called when a predicate check has been per
formed at the call site. We have a parameter that specifiedetbth

of the disjunction of invariants derived from all callsité®r func-
tions being called in the surrounding function, we inlinesé func-
tions based on another depth parameter.

Resolving Conflicts.We say that two cast instancesnflictif they
are casts from the same supertype to different subtypek,that
the conjunction of the access predicates at the two locatioa
satisfiable. As discussed in Section 5, if this happens, tgo-a
rithm cannot find a predicated refinement of the subtype tdbya
that suffices to check the program is correct. Conflicts aiteer
because there is no predicated refinement for that specfficaa
because our invariant generation is too weak.

In order to get useful results even in the presence of cosflict
we extend the algorithm for inference described in Sectiohy5
using heuristics to greedily restrict the set of accessipages to
those that do not conflict with downcasts to different subs/pNVe
found in our experiments that despite conflicts, out of al wit&0
edge predicates that could be discerned by a close manpaicins
tion, our implementation was able to infer 80 predicateseszily
(i.e.,89% of the edge predicates were correctly inferred). When-
ever our method found an edge predicate, it was, in all cases b
one, exactly the one that was revealed by close manual itispec

Predicate Edges Accesses
Program LOC | Inferred | Actual | Predicated | Other | Conflicts | Time
ip_icmp 7K 7 7 15 7 1 1s
x1l 12K 8 8 428 0 200 | 875s
moapsource 14K 3 3 5 6 2 1s
gdkevent 16K 12 13 90 5 31 38s
lua 18K 13 15 274 8 130 | 151s
snort 42K 7 7 26 120 0 12s
sendmail 106K 17 24 406 17 138 | 995s
ssh 35K 0 0 0| 2105 0 12s
bash 101K 13 13 440 | 3914 162 | 1157s
[Total | 351K | 80 | 90 | 1684 6182 | 664 | 3242s|

Table 1. Experimental Resultd:OC is lines of codeTime is the number of seconds spent on inferefredicate Edgess the number
of predicated edges in the predicated subtype hieratofgrred is the number such edges for which our tool inferred an edgdigate,
andActual is the number of edges constructed by manual inspectioneafdde Accessegjives the number of syntactic cast points in the

program. Among thes@®redicatedis the number of predicated accesses@ttter is the number of other access€anflicts is the number
of conflicts.

TObject
gdkevent I
tt=2 tt>7 tt=3
l ¥
any P gc n
type = {3-7} type = {22-27} »L
button dnd
gch
type = 31
type = {1011} type =3 ge.geh->tt =7 gc.gch->tt =6
crossing scroll motion gc.gcl$>tt =3
u ts cl

Figure 5. Predicate subtype hierarchy for (a)gdkevent (b)lua

We also have heuristics identifying downcast edges thabtlbave ing at one level of callers to generate sufficiently preciseiii-
predicates. For the case where programmers do not use detwnca ants. Our algorithm identified 1,684 downcasts requirireffrate
edges with predicates, our tool identified all 131 such edgés guards. These accesses were determined by a predicatgdisgbt
these edges were manually confirmed to have no edge predicate hierarchy of 90 edges. We were able to infer 77 predicatesedge

Our results show that by identifying these conflicts and blyimo corresponding to union fields correctly. We also correatfgiired
cluding those access predicates in our inference, we ihéema- the 3 predicate edges corresponding to explicit C type dasts
jority of correct edge predicates. The heuristics to idgmmnflicts moapsource.

are described in Section 6.2 and a more detailed breakdoaonef The only case involving explicit predicated casts occuired
flicts is shown in Section 6.3. moapsource. Packets are encapsulated within other packets. These

packets contain a header that contains an 8 bit field thatifiden

the next header type. The next header is explicitly casteaitiht

We have used our tool to investigate nine open source pragram header subtype.

ip_icmp is the ICMP implementation in the FreeBSD kernel. Our tool can derive complex predicated subtyping hierashi
moapsource is the packet processing code of Emstar, a sensor net- Figure 5 shows the two partial predicated subtyping hidtiaecfor
work development toolgdkevent is how events are encoded in gdkevent andlua. Some subtypes are dropped because of space.
the GDK graphics libraryLua is a dynamically typed language in- The subtypes shown are representative of the output of ol

6.2 Experimental Results

terpreter.snort is an opensource intrusion detection tadl.is a show that predicate edges are not simply single tag assigsrbat
small lisp interpreter from the SPEC benchmasksh is the widely rather more complex predicates involving ranges.

used secure shell clientash is the Bourne Again shelkendmail In gdkEvent, checking the type of an event can be done by
is the Sendmail email server. looking at thetype field in the GdkEventAny union field or the

We summarize our results in Table 1. Our experiments were type union field. In Figure 5(a) we use thgpe union field to
all run on a Dell PowerEdge 1800 with two 3.6Ghz Xeon proces- distinguish accesses. Our tool handles this by knowing tineat
sors and 5 GB of memory. All experiments exceptrfoapsource type field in theGdkEventAny and thetype union field represent
were run without inlining functionsmoapsource required look- the same location in memory. Edges are disjunctions of tagsa

i.e. to access therossing field, the type field must be 10 or
11. Also, just an= operator is not enough asia requires the>
operator as seen from the access ofgadield.

Conflicts and Bugs. Recall there are two sources of conflicts:
downcasts on edges for which no predicate could be infeaed,
downcasts on edges where a predicate was inferred, but wrere
access predicate invariant was not strong enough to estatbie
edge predicate, either because the inferred invariant ecaséak,
or because there is a bug.

For the first case, we used the following heuristic to deteemi
which edges have no predicates. Given a type no@d!, dfowncast
instances of an outgoing downcast edge conflict with all dmsh
instance of any other outgoing cast edge, then it is likebt th
type node has no predicated downcasts. Using this heuristic
tool inferred 84 unions types and explicit casts of 47 défer
fields corresponding to the 6,182 accesses as not havingedstvn
predicate edges. We then manually confirmed that for evezyobn
these edges, there was no downcast predicate.

memset causes a new anonymous union, leading to 3,886 non-
predicated downcasts bash.

2. External Correlation. Some union field accesses or explicit
casts depend on a wide range of variables, limiting the peageli
over fields of a single data structure is not sufficient. Wentba
few cases where the union accesses were safe, but the reason f
safety could not be expressed within our type system. Foriéun
fields, we found that there were edge predicates for the uhigin
used variables belonging to a different structure, and ¢busd not
be expressed usinthis. We believe that most of the 20 down-
cast predicate edges involving explicit casts fall in tidgegory. In
future work we intend to look at ways to infer this externat-co
relation and “pack” the other structure together with thecture
containing the downcasted field in order to be able to extand o
technique to this setting. In theh benchmark from the Olden suite
(not shown in the Table), we found that the reason for safety d
pended not on other fields, but on tbentrol location. In different
phases of execution, the program was in different locatiand the

For the second case, when the access predicate was not strongalue in the union is directly correlated to the phase andédine

enough to imply the edge predicate, the downcast instapéeatiy
conflicted with many other downcast instances. To fac#ifaster
identification of possible bugs, the downcasts that cortfietmost
with others are presented first. In such cases, the prograforget
to check the predicate before the access, leaving the jldagsih

program location. Inssh we found a variant of this, where there
were many conflicts involving theiphercontext union, which
includes different types of ciphers as fields. Differentrgption
and decryption functions choose the appropriate elemenhef
union without establishing any edge predicate because temax

an unsafe access. For example, there are 23 cases in Lua wherglobal data structure ensures that the function pointergspond-

two different variables are assumed to have the same ptedica
hold. A union field in one of those variables is accessed #ifier
appropriate predicate is checked for tkatruct. However, the
same union field in the other variable is also accessed withou
checking if the appropriate predicate holds on #tatuct as well.
Inthese 23 cases, there is an assumption that two diffeagiatbles
always have the same predicate hold. Although our tool ptese
conflicting statements, we have not fully investigated tod as a
bug finder.

6.3 Limitations

Table 1 also summarizes how often predicated guarded a&scess
and downcasts are used. Although we found that 1,633 casts co
responding to union field accesses and 46 on explicit castbea
described by our type system, there were 6,182 access thaoti
follow our idiom. The majority of these accesses (6,018 efiih
occurs when unions are used to simplify memory access. @ur si
ple heuristic from the last section correctly distingustadl such
accesses from predicated casts. The remaining 164 aceatsas
required a predicate over other Ivalues as opposed to jlds fioé

the downcasted Ivalue, or required stronger invariants the ones
generated by our type system.

1. Overlapping Layout. For 6,018 conflicting accesses, program-
mers used unions to easily access memory locations. Forpdeam
in the header filen6.h (used inicmp andssh) we saw the follow-
ing structure:

struct in6_addr {
union { uint8_t wu6_addr8[16];
uint16_t u6_addr16[8];
uint32_t u6_addr32[4];
} in6_u;

};

In this case, the union is just a sequence of several byteshand
union fields are used to access bytes at different offse¢dysaf

Memsets.Thememset macro is a more complex example of this.
3,886 union accesses involved themset macro.Memset is a
widely used macro that takes three parameters s, and sets
bytes to some charactesstarting at memory addressThe macro

ing to the encryption and decryption functions are coreglatith
the field inside the ciphertext union.

3. Operation Ordering. In our imperative languag&4 specifies
that predicates must be over fields that have not been madified
In C programs, this constraint is relaxed. Fields in preeieare
modified when a data structure is being created. These fiedds a
usually sequentially written to. Our type system assumasttie
assignments to the tag fieldse(, the fields appearing in the edge
predicate) are done, thus establishing the edge predidztése
the structure is cast. However, in the example of Figure &, th
programmer may createsedirect message, and assign to the
ih _gwaddr, andafter that, write the appropriate value in the tag
field icmp_type indicating which union subtype the structure had.
Thus, when theh_gwaddr field was accessed, the edge predicate
did not hold as it was established afterward, thus leading to
spurious conflict. Such code is easily modified to make it jpass
type checker, simply by moving the tag assignment.

4. Invariant Imprecision. Many conflicts arose because even
though we inferred the correct edge predicates, the algorde-
scribed that accumulates the dominating statements adants
did not generate invariants strong enough to imply the edgéip
cates. Though the presented algorithm is fast and scalaialey
complexities in the program cause it to not always be precise
enough. These include aliasing, the need for loop invesjaahy-
namic data structures, and interprocedural reasoningthiéofew
cases where our invariants are too weak, more precise safiety
alyzers such as BLAST [17], ESC [13], and TVLA [26] can be
used to statically verify that the edge predicates hold atctist
points, or alternatively, dynamic checking can be insettezhsure
type-safety at runtime [24, 12, 21].

7. Conclusions

We have presented a dependent type system for the verifigaftio
union accesses, and an algorithm based on Craig Intergolati
infer the dependent refinements, thereby yielding a fullpatic
way to check the safety of union accesses. Our type systetureap
the common idiom where the programmer checks tag fields éefor
accessing data in a union, and is able to infer the tag fieldselds

is implemented by the use of an anonymous union. Each use ofas the protocol used by the programmer to ensure safety.ghhou

we could instantiate our approach with more advanced iaméri
generation techniques like abstract interpretation (topate the
cast predicates), our experiments demonstrate that for cagss,
our simple syntax-directed invariants suffice to deternhio the

programmer ensures the safety of union accesses, almasysalw

[22] K.L. McMillan. An interpolating theorem proverTheor. Comput.

Sci, 345(1):101-121, 2005.

[23] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:

Intermediate language and tools for analysis and transfom of
C programs. InCC 02 LNCS 2304, pp. 213-228. Springer, 2002.

inferring exactly the same type as that found by a close mlanua [24] G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Viégim

inspection of the code. In places where the inferred edgdiqgat
cannot be statically proven to hold, we can use the edgeqaredi

CCured: type-safe retrofitting of legacy softwarACM TOPLAS
27(3):477-526, 2005.

[25] J.M. Rushby, S. Owre, and N. Shankar. Subtypes for fpations:
Predicate subtyping in PVSEEE TSE 24(9):709-720, 1998.

[26] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shapdyais via
3-valued logic.ACM TOPLAS24(3):217-298, 2002.

[27] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and BfR. Coping
with type casts in C. IESEC/FSE 99p. 180-198. ACM, 1999.

[28] H. Xi. Imperative programming with dependent types.LIES 0Q
pp. 375-387. IEEE, 2000.

[29] H. Xi and R. Harper. A dependently typed assembly laggualn
ICFP 01, pp. 169-180. ACM, 2001.

[30] H. Xiand F. Pfenning. Dependent types in practical paogming. In
POPL 99 pp. 214-227. ACM, 1999.

to insert runtime checks, without modifying the programrtsdrt
fields carrying type information. In future work, we shalhgealize
the technique with parameterized invariant generatiorerses,
consider more expressive dependent type formalisms thatsle
capture external correlations, and extend our predicabtyge
approach to statically verify the safety of other kinds ofvdoasts,
for example in Object Oriented code.

AcknowledgementsWe thank Todd Millstein and Pat Rondon for
carefully reading drafts and providing valuable feedback.

References

[1] A. Aiken, E. Wimmers and T.K. Lakshmam. Soft typing with
conditional types. IiPOPL 94 pp. 163-173. ACM, 1994

[2] S. Artzi and M.D. Ernst. Using predicate fields in a higliligxible
industrial control system. I®@OPSLA 05pp. 319-330. 2005.

[3] T. Ball and S.K. Rajamani. The SLAM project: debuggingt®m
software via static analysis. ROPL 02 pp. 1-3. ACM, 2002.

[4] S. Chandra and T. Reps. Physical type checking for RABSTE 99
pp. 66—75. ACM, 1999.

[5] W. Craig. Linear reasoningl. Symbolic Logic22:250-268, 1957.

[6] S. Cui, K. Donnelly, and H. Xi. ATS: A language that coméin
programming with theorem proving. FroCos 05 LNCS 3717, pp.
310-320. Springer, 2005.

[7] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and E&dek.
Efficiently computing static single assignment form andghagram
dependence grapthACM TOPLAS$13:451-490, 1991.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitiveganm
verification in polynomial time. IiPLDI 02, pp. 57-68. ACM, 2002.

[9] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theoymuover for
program checkingJ. ACM 52(3):365-473, 2005.

[10] E.W. Dijkstra. A Discipline of Programming. Prenti¢tall, 1976

[11] Y. Fang. Translation validation of optimizing compiler®hD thesis,
New York University, 2005.

[12] C. Flanagan. Hybrid type checking. ROPL 06 pp. 245-256. ACM
Press, 2006.

[13] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson,B. Saxe, and
R. Stata. Extended static checking for JavaPLiDI 02, pp. 234-245.
ACM, 2002.

[14] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitiyge qualifiers.
In PLDI 02, pp. 1-12. ACM, 2002.

[15] M. Furr and J. Foster. Checking type safety of foreignction calls.
In PLDI 05, pp. 62—-72. ACM, 2005.

[16] M. Harren and G.C. Necula. Using dependent types tadfgetie
safety of assembly code. IBAS 05LNCS 3672, pp. 155-170.
Springer, 2005.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. yLaz
abstraction. IFPOPL 02 pp. 58-70. ACM, 2002.

[18] R. Jhala, R. Majumdar, and R. Xu. Structural InvarialisSAS 06
Springer, 2006.

[19] T. Jim, J.G. Morrisett, D. Grossman, M.W. Hicks, J. Cagnand
Y. Wang. Cyclone: A safe dialect of C. ldsenix pp. 257—288. 2002.

[20] R. Komondoor, G. Ramalingam, S. Chandra, and J. Fi@épendent
Types for Program Understanding. TACAS 05LNCS 3440, pp.
157-173. Springer, 2005.

[21] A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debuggirig xun-

time type checking. IFFASE 01 LNCS 2029, pp. 217-232. Springer,
2001.

