
State of the Union:
Dependent Type Inference via Craig Interpolation

Ranjit Jhala
CSE Department, UC San Diego

jhala@cs.ucsd.edu

Rupak Majumdar
CS Department, UC Los Angeles

rupak@cs.ucla.edu

Ru-Gang Xu
CS Department, UC Los Angeles

rxu@cs.ucla.edu

Abstract
The ad-hoc use of unions to encode disjoint sum types in C pro-
grams and the inability of C’s type system to check the safe use of
these unions is a long standing source of subtle bugs. We present
a dependent type system that rigorously captures the ad-hocproto-
cols that programmers use to encode disjoint sums, and introduce
a novel technique for automatically inferring, via Craig Interpola-
tion, those dependent types and thus those protocols. In addition
to checking the safe use of unions, the dependent type information
inferred by interpolation gives programmers looking to modify or
extend legacy code a precise understanding of the conditions under
which some fields may be safely accessed. We present an empirical
evaluation of our technique on 350KLOC of open source C code.
In 80 out of 90 predicated edges corresponding to approximately
1500 union accesses, our type system is able to infer the correct de-
pendent types. This demonstrates that our type system captures and
explicates programmers’ informal reasoning about unions,without
requiring manual annotation or rewriting.

1. Introduction
We present a type system for statically checking the safety of down-
casts in imperative programs, and a novel technique for inferring
dependent types based on Craig Interpolation. Our type system is
motivated by the problem of checking the safety of union accesses
in C programs. C programmers extensively use unions to encode
disjoint sum types in an ad-hoc manner. The programmer uses the
value of a tag field to determine which element of the union an
instance actually corresponds to. For example, Figure 1 shows net-
working code that manipulates packets represented as a C struc-
ture (packet) which contains a union (icmp hun) to represent dif-
ferent types of packets. The packet is interpreted as aparameter
message (fieldih gwaddr) when the fieldicmp type = 12, as a
redirect message (fieldih pptr) when the fieldicmp type = 5,
and as anunreachablemessage (fieldih pmtu) when the field
icmp type = 3. This ad-hoc protocol determining the mapping
between tag values and the union elements is informally docu-
mented in the protocol description, but not enforced by the type
system. The absence of static checking for the correctness of ac-
cesses is a common source of subtle bugs due to memory corrup-
tion.

The problem of checking the safety of union accesses is an in-
stance of the more general problem of checking the safety ofdown-
castsin a language with subtyping —we can consider each possi-
ble “completion” of a structure with the different elementsof the
union as subtypes of the structure, and we can view union accesses
as downcasts to the appropriate completion. At run-time, each in-
stance of a supertype corresponds to an instance ofone ofits im-
mediate subtypes. To ensure safety, programmers typicallyasso-
ciate with each subtype, aguard predicateover some tag fields.

The predicates for the different subtypes are pairwise inconsistent.
Before performing a downcast (i.e., accessing the union), the pro-
grammer tests the tag fields to ensure that the correspondingsub-
types’ guard predicate holds, and similarly before performing an
upcast (i.e., constructing the union), the programmer sets the tag
field to ensure the guard predicate holds.

We formalize this idiom in a dependent type system compris-
ing two ingredients. The first ingredient is a type hierarchycorre-
sponding to a directed tree of types, where the nodes correspond to
types, and children to immediate subtypes. The second ingredient is
a predicated refinementof the hierarchy, where we label the edges
of the type hierarchy tree withedge predicatesover the fields of the
structure that are true when the supertype can be safely downcast to
the subtype corresponding to the target of the edge, and conversely,
must be established when the subtype is upcast to the supertype.
By requiring that the edge predicates for the different children of a
supertype be pairwise inconsistent, we ensure that there isa single
subtype of which the supertype is an instance at runtime.

Given a predicated refinement for the subtype hierarchy of the
program, we can statically type check the program by verifying
that at each occurrence of an upcast or downcast, the edge pred-
icate for the cast holds. Though there are several static verifica-
tion engines that can be used for this purpose, we present a simple
syntax-directedsystem that is scalable, captures the idiomatic ways
in which programmers test fields, and concisely specifies theset of
programs that are accepted by our type system. The techniquecon-
verts the programs to SSA form, and thenconjoinsthe statements
dominatingeach cast location to obtain acast predicatethat is an
invariant at the cast location. Our type checking algorithmveri-
fies that at each cast location the edge predicate corresponding to
the cast holds by using a decision procedure to check that thecast
predicateimpliesthe edge predicate.

We eliminate the burden of explicitly providing the predicated
type refinement, by devising a new technique to infer dependent
types via Craig Interpolation. To infer the refinement, we first gen-
erate a system ofpredicate constraintswith variables represent-
ing the unknown edge predicates. The predicate constraintsforce
the solutions for the variables to have the key properties ofedge
predicates, namely: (1) that they be over the fields of the structure,
(2) that the edge predicates for the subtypes be pairwise inconsis-
tent, and, (3) that the edge predicates hold at each cast point, i.e.,at
each (up- or down-) cast point, the cast predicate implies the edge
predicate.

To solve these constraints, we observe that thepairwise Craig
Interpolant for a sequence of formulasA1, . . . , An that are pair-
wise inconsistent, is a sequence of formulasÂ1, . . . , Ân such that:
(a) eachÂi contains variables that occur in all ofA1, . . . , An,
(b) each pairÂi, Âj is inconsistent, and, (c) eachAi implies Âi.
Pairwise Craig interpolants are guaranteed to exist for recursively
enumerable theories, and can be efficiently computed for many the-

ories of practical interest [22]. Note that the properties (a),(b) and
(c) of interpolants correspond directly to the requirements (1),(2)
and (3) of the edge predicates. We show that a predicated refine-
ment exists iff for each type, the cast predicates for its subtypes are
pairwise inconsistent. Thus, to solve the predicate constraints, and
infer the (dependent) predicated refinement, we compute theedge
predicates for the subtypes of each type as the pairwise interpolants
of the cast predicates for the subtypes.

We have implemented the predicated subtype inference algo-
rithm for the C language, and used it to infer the edge predicates
for subtype hierarchies obtained from unions, for a varietyof open
source C programs totaling 350K lines of code. We empirically
show that our inference algorithm is effective. In 80 out of 90 pred-
icated edges (corresponding to approximately 1500 union access
points), our algorithm finds the correct predicate guards (which we
manually verified a posteriori).

2. Related Work
Language support.Functional programming languages like ML
and Haskell provide disjoint sum types within the language.The
Cyclone language [19] provides mechanisms such as sum typesand
subtyping within C, allowing safer programs to be written within a
C-like language. Our goal on the other hand is to check for safe
usage in a large body of legacy code written in C. Moreover, our
techniques are also useful in low level code where bytes “offthe
wire” must be cast to proper data types (as in networking code).

Static analysis.There is a large body of recent work on statically
proving properties of C programs (augmented with adding runtime
checks) to make them execute safely [3, 21, 14, 8, 3]. CCured [24]
performs a pointer-kind inference and adds runtime checks to make
C programs memory safe. However, CCured leaves open the ques-
tion of statically checking proper usage of unions or downcasts of
pointers: either putting in additional tags or removing unions al-
together and replacing them with structures. The former technique
ignores checks the programmer already has in place, the latter tech-
nique may not work for applications such as network packet pro-
cessors where the data layout cannot be changed. Runtime type in-
formation has been used for bug finding and providing debugging
information for bad casts or union access [21], but the inference
problem has not been studied. Identifying correct use of datatypes
in the presence of memory layout and casts has been studied in
[4, 27]. However, these type systems do not correlate guardsto en-
sure correctness of downcasts.

Dependent types.There is a large body of work in dependent types
[30, 28, 16, 29]. There are several recent attempts to add dependent
types within a programming language. For example, Xanadu [28]
and ATS [6] provide expressive dependent types within the lan-
guage and can express more general program invariants than pred-
icated unions. Similarly, the predicate subtyping scheme of PVS
[25] is more general than our system. However, all these systems
requires interactive theorem proving as the type system becomes
undecidable. By restricting our target properties and proof strate-
gies, we provide an automatic mechanism. Closer to our work,[16]
provides dependent record types to encode safety properties such
as array bound checks and null pointer dereferences. These general
systems require annotations at the basic block level to typecheck
programs. Our inference algorithm is based on interpolating deci-
sion procedures [22] and can automatically infer dependenttype
information based on visible variables.

The type system of [15] infers dependent types for representing
ML values passed to C programs through the foreign language in-
terface. They infer types via a dataflow analysis that uses a specific
lattice of facts derived from the OCAML foreign function inter-
face, unlike our algorithm, which infers generic predicates.

Our type system is closest to the type systems in [1] and [20].
The type system in [1] only tracks the evaluation of ML-style
pattern-matching statements. Our type system tracks all assign-
ments and conditionals dominating the access. In [20], the authors
consider the problem of identifying record types and guarded dis-
joint unions in COBOL programs. However, both approaches infer
types by using a dataflow analysis to track equalities between vari-
ables and constants appearing in branch statements. In manyof our
experiments we have found that this simple language of guards is
insufficient (because, for example, programmers use guardsof the
form tag ≥ 5).

3. Overview
We now give an overview of our dependent type system and our
technique for using interpolation for inference, by showing how we
automatically infer the predicates that determine how the union of
the example in Figure 1 is used. In particular, we show how we infer
the predicated type refinement that captures the informal intuition
that the packet can be interpreted as aparametermessage (i.e., the
ih pptr field can be accessed) when the fieldicmp type = 12, as
aredirectmessage (i.e.,theih gwaddr field can be accessed) when
the fieldicmp type = 5, and as anunreachablemessage (i.e., the
ih pmtu field can be accessed) when the fieldicmp type = 3.

The type system has two ingredients: asubtype hierarchycorre-
sponding to a set of (simple) types and a subtyping relation,and a
predicate refinementof the subtype hierarchy that specifies when a
supertype can be downcast to a subtype.

Ingredient 1: Subtype Hierarchy. A (simple) typeis either a base
type int or bool, or a structurewhich is a list of pairs of field
names and their (simple) types. For two (simple) typest, t′ we say
t′ � t, or t′ is a subtype oft if t is a prefix of t′. A Subtype
Hierarchy is a forest(T,E) where thenodescorrespond to a set
of (simple) typesT , and the set ofedgesE ⊆ T × T is such that
(t, t′) ∈ E if t′ is the immediate subtype oft i.e.,t′ � t and there
is not′′ such thatt′ ≺ t′′ andt′′ ≺ t.

Consider the structure definitions of the program of Figure 1(a).
We can “unroll” the union definitions to obtain three (simple) sub-
types of the typepacket, namelyredirect, param andunreach,
which correspond, respectively to instances ofpacket where the
union field is actually aih gwaddr, ih pptr or ih pmtu. Thus, as
shown in Figure 1(b), each of the (simple) subtypes is a structure
containing all the fields of the supertypepacket together with the
extra field from the union. In this setting,t′ � t if the fields oft
form a prefix of the fields oft′.

Safe Unions via Safe Downcasts.We reduce the problem of check-
ing the safety of union accesses to checking the safety ofdowncasts
in our system by converting each union access into a downcastto
the subtype containing the particular union field being accessed,
followed by a standard field access on the subtype. Figure 1(c)
shows how the converted version of the program of Figure 1(a),
with all union access replaced with explicit downcasts followed by
field accesses, at statements05, 09, and11. Next, we see how tore-
finethe subtype hierarchy to enable the static checking of the safety
of downcasts and thus, union accesses.

Ingredient 2: Predicated Refinement.We say that(T, E,φ) is a
predicated refinementof the subtype hierarchy(T,E) if φ is a map
from the edgesE to first-orderedge predicatessuch that:

R1 For each edge(t, t′) ∈ E, the edge predicateφ(t, t′) has one
free variablethis that refers to a structure of typet.

R2 For each nodet ∈ T , for each pair of its childrent′, t′′ the
predicatesφ(t, t′) andφ(t, t′′) are inconsistent,i.e.,φ(t, t′) ∧
φ(t, t′′) is unsatisfiable.

struct packet{
u_char icmp_type;
u_char icmp_code;
u_short icmp_cksum;
union {
int ih_gwaddr;
short ih_pptr;
short ih_pmtu

} icmp_hun;
};
00 int type, dest, code;
01 struct packet icp;
02 . . .
03 type = icp.icmp_type;
04 if (type == 5) {
05 icp.icmp_hun.ih_gwaddr = dest;
06 }
07 else {
08 if (type == 12) {
09 icp.icmp_hun.ih_pptr = 0;
10 code = 0;
11 } else if (type == 3) {
12 icp.icmp_hun.ih_pmtu = 0;
13 }
14 }

type packet =
s{(icmp_type,int),(icmp_code,int),

(icmp_cksum,int),(icmp_hun,void)};
type redirect =

s{(icmp_type,int),(icmp_code,int),
(icmp_cksum,int),(ih_gwaddr,int)};

type packet =
s{(icmp_type,int),(icmp_code,int),

(icmp_cksum,int),(ih_pptr,int)};
type packet =

s{(icmp_type,int),(icmp_code,int),
(icmp_cksum,int),(ih_pmtu,int)};

00 int type, dest, code;
01 packet icp;
02 ...
03 (int)type := (int)((packet)icp).icmp_type;
04 if ((int)type = 5) then
05 (int)((redirect)icp).ih_gwaddr := (int)dest;
07 else
08 if ((int)type = 12)
09 (int)((parameter)icp).ih_pptr := 0;
10 (int)code := 0;
11 else if ((int)type = 3)
12 (int)((unreachable)icp).ih_pmtu := 0;
13 else ...

Figure 1. (a) ICMP Example (b) (Union) Subtype Hierarchy and Predicated Refinement (c) Code translated to our core language with
casts explicated

In this case, we refer to(T,E, φ) as aPredicated Subtype Hierar-
chy.

We use the predicate refinement to statically check the safety
of downcasts and thus, union accesses. Intuitively, the edge pred-
icateφ(t, t′) specifies the conditions under which a value of the
supertypet actually corresponds to an instance of typet′ and can
be safely downcast. Before performing a downcast (i.e.,accessing
a union field) the programmer must determine which downcast is
safe by determining which of the edge predicates of the immediate
subtypes holds.R1 ensures these predicates are overtag fields of
the supertype, andR2 ensures that only one of them holds. Thus,
the edge predicates formalize and explicate the informal “tagging
protocol” used by the programmer.

In Figure 1(b) each edge of the subtype hierarchy is labeled
with its edge predicate. For example,ih gwaddr field can be safely
accessed only after thepacket structure has been downcast to a
redirect struct, which is permissible only when theicmp type
field equals5. We now show how,given a predicated refinement
for a subtype hierarchy, we canstatically checkthe safety of down-
casts.

3.1 Type Checking

Given a predicated subtype hierarchy(T,E, φ), a program is type
safe if the hierarchy meets requirementsR1,R2 and at each point
in the program where an expressione of type t is cast to the type
t′, we have: (1) eithert′ is a supertype oft, i.e.,we have an upcast,
or, (2) t′ is a subtype oft, i.e., we have a downcast, and (3) in
either case, the predicate obtained by substitutingthis with the
variablee in the edge predicateφ(t, t′) holds at that point. Thus,
to type check the program, the edge predicates must satisfy athird
requirement:

R3 The edge predicateφ(t, t′) with this substituted withe must
hold at each program location where an expressione is down-
cast from a typet to a subtypet′, or upcast fromt′ to t.

Our type checking algorithm proceeds in three steps. First,we
use standard type checking to verify that each field access isto
a field in the (simple) type of the expression, and that each cast

conforms to the subtype hierarchy,i.e., is either an upcast to a
supertype or a downcast to a subtype. Second, we use a decision
procedure to check that the edge predicates satisfy requirements
R1,R2. Third, we perform a flow sensitive analysis to check that the
edge predicates hold at each upcast or downcast. We now describe
the last step in detail.

Invariants. A typing judgment in our type system carries along
an invariant in addition to the type environment. The invariant is
a predicate on the program state that is guaranteed to hold atthe
program point (for all program executions reaching that point).
A typing rule additionally transforms the invariant by adding the
effect of the current statement on the invariant. Intuitively, the
invariant tracks the set of all facts that directlydominatea particular
statement,i.e., the set of all program facts that are guaranteed to
be executed on all paths from the entry point of the function to
the program point. This captures the idiom that the tag fieldsfor
a union are checked in a conditional dominating the access ofthe
union.

In Figure 1(c), consider the implicit cast (at the union access)
from packet (t) to the redirect message (t′) at line05. The state-
ment05 is dominated by thethen branch at04 and the assignment
03, and so the invariant of05 is:

(icp.icmp type = type) ∧ (type = 5) (1)

Similarly, the invariants for09 and11 are respectively:

(icp.icmp type = type) ∧ (type 6= 5) ∧ (type = 12), and,

(icp.icmp type = type) ∧ (type 6= 5) ∧ (type 6= 12) ∧ (type = 3)

Thus, for each statements where a downcast or upcast occurs,
we compute, using the constraints generated by the type checking
rules, the invariant ats.

Checking using Access Predicates.From the invariant, we con-
struct anaccess predicateψs(t, t′) by syntactically renaming all
local variables in the invariant to fresh names, and renaming the
cast expression withthis. By replacingicp with this andtype
with a fresh, subscripted version, we have the access predicate

ψ05(packet, redirect):

this.icmp type = type1 ∧ type1 = 5 (2)

To ensure that conditionR3 is met, we use a decision
procedure[9] to check that at each downcasts of t to a subtype
t′, or upcast oft′ to t, the access predicateψs(t, t′) implies the
edge predicateφ(t, t′). So, for the downcast oficp from packet
to redirect at line05, we use a decision procedure to check the
validity of the implication:

this.icmp type = type1∧type1 = 5 ⇒ (this.icmp type = 5)

In the given code snippet, at each downcast statement (thereare
no upcasts), the access predicate implies the corresponding edge
predicate and so we conclude that the program is type safe.

3.2 Type Inference via Craig Interpolation

Given a subtype hierarchy and a program, thetype inferenceprob-
lem is to find a predicated refinement of the subtype hierarchythat
suffices to type check the program, if one exists. Thus, the problem
is to infer the edge predicates,i.e., the mappingφ fromE to pred-
icates that satisfies requirementsR1,R2 andR3, and thus ensures
that the program type checks.

For a subtype hierarchy(T,E), let the cast predicate for
(t, t′) ∈ E, writtenψ(t, t′), be the disjunction of all access pred-
icatesψs(t, t′) over all program statementss wheret is downcast
to t′, or t′ is upcast tot. For the typespacket andredirect, there
is a single cast, so the cast predicateψ(packet, redirect) is just
ψ05(packet, redirect) shown in formula (2).

Using a decision procedure we check that for each pair of
immediate subtypest′ and t′′ of a typet thatψ(t, t′) ∧ ψ(t, t′′)
is unsatisfiable. If not,i.e., if the conjunctions of the cast predicates
is satisfiable, there exists a pair of program executions forwhich
the same type is downcast or upcast from two different subtypes
which cannot be distinguished by the generated invariants,and so
we conclude that there is no suitable predicated refinement.

Instead, suppose that we have found the conjunction of all the
pairs cast predicates to be unsatisfiable. As the predicatesψ(t, t′)
contain local variables, they do not satisfy the requirement that
predicates are exclusively over the fields of the supertype.To get
predicates over the supertype fields, we useinterpolation[5].

Pairwise Interpolants. Given a sequence of predicates
A1, . . . , An such that for all i, j, the predicateAi ∧ Aj is
unsatisfiable, apairwise interpolant for the sequence is the
sequenceÂ1, . . . , Ân ≡ ITP(A1, . . . , An) such that:

I1 For eachi, the variables ofÂi occur in each ofA1, . . . , An,

I2 For each pairi, j, the predicatêAi ∧ Âj is unsatisfiable, and,

I3 For eachi, the implicationAi ⇒ Âi is valid.

If predicates are over theories of equality and arithmetic,inter-
polants can be computed from theproof of unsatisfiabilityof con-
junctions of two predicates [22].

To infer appropriate edge predicates we compute the pairwise
interpolant for the sequence of cast predicates for the immediate
subtypes oft. Thus, if the immediate subtypes of a typet are
t1, . . . , tn, then:

φ(t, t1), . . . , φ(t, tn) ≡ ITP(ψ(t, t1), . . . , ψ(t, tn))

As the conjunction of the pairs of cast predicates is unsatisfiable,
the interpolant is guaranteed to exist. Due to the renaming,the only
variable in common to the differentAi predicates isthis. Con-
dition I1 implies that the interpolants, and thus, the inferred edge
predicates are overthis and fields that are reachable fromthis,
i.e., fields of the structuret, thus enforcing requirementR1. Con-
dition I2 ensures that the pairwise conjunction of the predicates for

the different immediate subtypes are unsatisfiable, thus enforcing
requirementR2. Finally, I3 ensures the cast predicate implies the
inferred edge predicate

In our example, the cast predicatesψ(packet, redirect),
ψ(packet, param) andψ(packet, unreach) are respectively:

this.icmp type = type05 ∧ type05 = 5,

this.icmp type = type05 ∧ type05 6= 5 ∧ type12 = 12, and,

this.icmp type = type12 ∧ type12 6= 5 ∧ type12 6= 12 ∧ type12 = 3

These cast predicates are pairwise unsatisfiable, and so we com-
pute the edge predicates:

φ(packet, redirect), φ(packet, param), φ(packet, unreach)

as the pairwise interpolant of

ψ(packet, redirect), ψ(packet, param), ψ(packet, unreach)

which yields the edge predicates:

this.icmp type = 5, this.icmp type = 12, this.icmp type = 3

3.3 Soundness via Checking Upcasts and Downcasts

In order to ensure soundness, our type system ensures that the
edge predicates hold both at upcasts and at downcasts. To seewhy
checks are necessary at both places, consider the unsafe example
shown in Figure 2, which is a version of the ICMP fragment
from Figure 1 where additionally (linesX4–X1) an instance of the
subtyperedirect is created (corresponding to the creation of a
packet instance where the union element is anih gwaddr), which
is then upcast to the supertypepacket. The program is unsafe, as
the “wrong” tag value is written in lineX2 (or, depending on ones
point of view, the wrong values are checked further down).

Our type system catches this, because we check (resp. infer)
the edge predicates using (resp. from) the access predicates at
downcastsand upcasts. In this unsafe example, the cast predicate
ψ(packet, redirect) is

(this.icmp type = 12 ∧ this.ih gwaddr = . . .)

∨

(this.icmp type = type05 ∧ type05 = 5)

where the first disjunct comes from the access predicate due to the
upcast on lineX1 and the second disjunct comes from the access
predicate due to the downcast on line05. The cast predicate for
ψ(packet, param) is the same as before. However, the cast pred-
icates for the two immediate subtypesredirect and param are
consistent, i.e., their conjunction is satisfiable, and so, no predicate
refinement can be inferred, and our type system rejects this program
as unsafe.

Intuitively, the soundness of our type system follows from the
following observations. First, we ensure that every new structure is
a “leaf” of the type hierarchy. Thus, at run time, any instance that
is ever downcast from, must have been upcast to at some point in
the past. Second, our type system ensures that the tag fields are not
altered, and therefore, any edge predicate that held at the upcast in
the past, will continue to hold till the downcast. Thus, by checking
the edge predicates at upcasts, and by requiring that edge predicates
for sibling edges be pairwise inconsistent, our type systemensures
there is a unique subtype that each supertype value is an instance
of (and therefore, can be safely downcast to), namely the subtype
whose edge predicate holds at the downcast point.

4. Language and Type System
We formalize our approach with a core imperative language with
simple types. We first describe the language, then define our depen-
dent type system, and finally, present our type checking algorithm.
Recall that C programs with unions can be translated into ourcore

int type, dest, code;
packet icp;
redirect rp;
X4 (redirect)rp = new(redirect);
X3 (int)((redirect) rp).ih_gwaddr = ...;
X2 (int)((redirect) rp).icmp_type = 12;
X1 (packet) icp = (packet) rp;
02 ...
03 (int)type := (int)((packet)icp).icmp_type;
04 if ((int)type = 5) then
05 (int)((redirect)icp).ih_gwaddr := (int)dest;
07 else
08 if ((int)type = 12)
09 (int)((parameter)icp).ih_pptr := 0;
10 (int)code := 0;
11 else if ((int)type = 3)
12 (int)((unreachable)icp).ih_pmtu := 0;
13 else ...

Figure 2. Unsafe version of ICMP

language as shown in Figure 1. In the converted program, union
fields are accessed after casting the lvalue down to the subtype con-
taining the union. Thus, in our setting, the problem of checking the
correct use of unions is reduced to that of checking the safety of
downcasts.

4.1 Syntax and Semantics

For ease of exposition, we present the intraprocedural, pointer-free
case – our implementation, described in Section 6, handles both
procedures and pointers.
Types. Figure 3(b) shows the types in our language. The set of
types include base typesbool andint, and structure types where
each structure is defined by a list of fields that are pairs of a label
l and a typet. We writevoid as an abbreviation for the types{}.
The set of types is equipped with a partial order: we sayt′ � t, or
t′ is asubtypeof t, if both t, t′ are structures and fields oft are a
prefix of the fields oft′. Note that every structure type is a subtype
of void.

Syntax. Figure 3(a) shows the grammar for expressions and state-
ments in our imperative language. Anlvalue lv is either an inte-
ger, structure or a field access, together with an explicit type cast.
Thenew(t) statement creates a new structure of typet, and is used
to model allocation. For ease of exposition, in our languageev-
ery lvalue lv includes a type cast(t), label l that specifies how
lv is interpreted. This captures explicit upcasts, downcastsand the
trivial cast to the statically declared type oflv. Arithmetic expres-
sions are constructed from constants and integer lvalues using arith-
metic operations. Boolean expressions comprise arithmetic com-
parisons. Statements areskip (or no-op), assignments, sequential
composition, conditionals, and while loops. A programP is a tuple
(T,Γ0, s) whereT is a set of types,Γ0 is a map from the program
lvalues to their declared types, ands is a statement corresponding
to the body of the program.

Static Single Assignment Form.For convenience in describing
the type checking and type inference rules, we shall assume that
the programs are converted to static single assignment (SSA) form
[7], where each variable in the program is defined exactly once.
Programs in SSA form have specialΦ-assignment operations of
the form lv := Φ(lv1, . . . , lvℓ) that capture the effect of control
flow joins. A Φ-assignmentlv := Φ(lv1, . . . , lvn) for lvalueslv,
lv1, . . . , lvn at a noden implies: (1)n has exactlyn predecessors
in the control flow graph, (2) if control arrives atn from itsjth pre-
decessor, thenlv has the valuelvj at the beginning ofn. Formally,

Lvalueslv ::= (t)lv.l | (t)v
Expressionse ::= n | new(t) | lv | e1 ⊕ e2
Booleanp ::= e1 = e2 | e1 ∼ e2
Statementss ::= skip | lv := e | s1; s2

| if e then s1 else s2
| while p do s1

(a) Expressions and Statements

Typest ::= int | bool | s{m1, ..., mk}
Fieldsm ::= (l, t)
Declarations t v

(b) Types and declarations

Figure 3. Syntax and Types.n is an integer constant,v a variable,
l a string label,∼∈ {<,>,≤,≥, 6=}, and⊕ ∈ {+,−}.

we extend the syntax withΦ-assignments:

Statementss ::= . . . | lv := Φ(lv1, . . . , lvn)

We assume that the program has first been transformed into SSA
form. We describe type checking and inference on programs inthis
form.

Semantics.We define the operational semantics of the language
using a store and a memory in the standard way but additionally
taking into account the runtime type information [21]. We assume
a storeΣ mapping variables to values, a partial mappingmemory
M from addresses to values, and a partial mappingruntime type
information(RTTI) W from variables and addresses to types. For
a predicatep, we writeΣ,M,W |= p to mean that the predicatep
evaluates to true in the state defined byΣ,M,W . When a structure
is created during execution using thenew(t) operation, it is tagged
with the (leaf) typet that remains with it during the remainder of
the execution. This value can be cast up or down along the path
from the leaft to the root typevoid, and intuitively, any attempt
to downcast it to a type not along this path leads the program into
a “stuck” state. We assume for simplicity that each base typetakes
exactly one memory word. The (small step) operational semantics
is defined using a relation(Σ,M,W ; s) → (Σ′,M ′,W ′; s′). The
rules take into account the RTTIW , and execution gets “stuck” if a
bad cast is made (i.e., an lvalue is cast to a type incompatible with
its RTTI). We define the predicateWF(Σ,M,W) which defines a
program state that is compatible with the runtime type information,
i.e., for each variable or addressp, the value ofp (Σ(p) or M(p))
is a valid element of the typeW (p). We write→∗ for the reflexive
transitive closure of→. For storeΣ, memoryM , RTTI W , and
statements, we say(Σ,M,W ; s) divergesif there is an infinite
sequence(Σ,M,W ; s) → (Σ1,M1,W1; s1) → We say
(Σ,M,W ; s) is stuck if (1) s is not skip, and (2) there is no
(Σ′,M ′,W ′; s′) such that(Σ,M,W ; s) → (Σ′,M ′,W ′; s′).

4.2 Predicated Refinements of Subtype Hierarchies

Programs in our language are type checked by the standard typing
rules dealing with booleans, integers and structures. However, we
also want to show that each runtime downcast executes safely. To
do so, we shall assume we are given apredicated refinementof the
subtype hierarchy of the program.

Subtype Hierarchy. We represent the subtype hierarchy for the set
of typesT in a program as a directed forest(T,E), where the nodes
correspond to the typesT correspond to nodes and there is an edge
(t, t′) ∈ E iff t′ is an immediate subtype oft, i.e.,t′ � t and there
is no t′′ different fromt andt′ such thatt′ � t′′ andt′′ � t. We
writeN(t) = {t′ | (t, t′) ∈ E} for the set of neighbors (immediate

subtypes) of a typet ∈ T . We say thatt is a leaf typeif N(t) is
empty, i.e.,t has no subtypes. We shall require that in our programs,
whenever a structure is created, it belongs to a leaf type. For ease of
exposition, we shall assume that all casts in a program are between
neighbors: whenever a value of typet is cast tot′, eithert ∈ N(t′)
or t′ ∈ N(t). We can enforce this by converting the program to a
normal form by introducing temporary variables into the program
to hold the values at intermediate cast points.

Predicated Subtype Hierarchy.A predicated refinementof a sub-
type hierarchy(T,E) is a triple(T, E,φ) whereφ is a map from
edges inE to quantifier free predicates that satisfies properties
R1,R2 andR3 (Section 3).

Tag Fields.The tag fieldsof a typet ∈ T as:

tag(t, φ) ≡ {l | ∃t′ ≺ t : this.l occurs inφ(·, t′)}

The tag fields of a typet are the fields that occur in the edge
predicates for any edge in the subtree rooted att in the subtype
hierarchy.

A predicated refinement captures the intuition that the program-
mer performs a downcast fromt to t′ only when a certain “tag”
condition on the fields oft is met, and this tag condition is disjoint
from the conditions under which downcasts are made fromt to sub-
types other thant′. Our type system checks that the first time a leaf
type structure is upcast, the edge predicate for the structure holds,
and that subsequently, the fields occurring in the edge predicate are
not modified. As this is done for all structures, and the edge predi-
cates for different downcasts are disjoint, we can statically deduce
that if the edge predicate for that subtype holds at the downcast
point, the downcast is safe.

4.3 Type Checking using Predicated Refinements

This intuition is formalized in our type checking algorithmthat
takes a program and a predicated subtype hierarchy, and follows
a three step process to check the safety of all the downcasts.

In the first step, we check that each access conforms to the sub-
type hierarchy. This is standard type checking, where we assume
that all the casts are safe and use the explicated cast information to
ensure that at each access(t)lv.l that t is a supertype or subtype
of lv and that the fieldl is indeed a field of the structuret. In the
second phase, we use a decision procedure (e.g., SIMPLIFY [9]) to
check that the supplied type hierarchy meets requirementsR1, R2.
In the third phase, we check conditionR3 and also:

R4 That the tag fields of a structure are not modified.

We now describe the third phase in detail.

Checking the Edge Predicates.We present a dependent type and
effect system that checks the edge predicates hold at each cast
location. In addition, our type system ensures that the tag fields
are not updated after a type has been upcast from a leaf type. This,
together with the disjointness of the edge predicates, enables us
to statically type check the safety of downcasts using a predicated
subtype hierarchy. Our type system is flow sensitive: judgments
carry aninvariant that is updated with the effect of each statement.
An invariant is a predicate over program states. We assume that the
function and atomic relation symbols appearing in the predicates
are interpreted by a decidable theory, and all validity checks are
done using a decision procedure for the theory.

Judgments.A judgmentin the type system for a statements is of
the form Γ, φ, I ⊢ s � I ′. The judgment states: using the edge
predicate mapφ from the predicated subtype hierarchy(T,E, φ),
we can deduce that if the program begins execution from a state
satisfying the type environmentΓ and the preconditionI , the exe-
cution of a statements proceeds without getting stuck (cast errors)
and results in a state satisfying postconditionI ′.

The judgment uses auxiliary relations wheret is the checked
type: Γ, φ, I ⊢e e : t to type expressions andΓ, φ, I ⊢l l : t to
type lvalues. These judgments state that under the type assumptions
Γ and using the edge predicate mapφ we can deduce that the
expressione (resp. the lvaluelv) has the typet and there are no
type errors. Our syntax-directedderivation rulesfor inferring type
judgments are shown in Figure 4. At each cast point, the rules
check, using a decision procedure, that the invariants imply the
corresponding edge predicate. In the figure, the queries made to
the decision procedure are highlighted using boxes.

Derivation Rules: Invariants. Intuitively, the rules accumulate an
invariant consisting of all program facts that dominate a particular
statement (i.e., the set of facts that hold on every execution up to
a statement). The SSA form ensures that this set of facts form
an invariant,i.e., every execution to this program point satisfies
the formula. The rules for statements accumulate the invariants by
conjoining the statements that dominate each cast point.

• Var-Assign for an assignment(t)x := e requires that the lvalue
on the left hand side has the same type as the right hand side,
but strengthens the invariantI to I ∧ x = e thus capturing the
value flow due to the assignment.

• Field-Assign for an assignment to a fieldlv.l := e is similar
to the previous rule, but in addition ensures that thel is not a
tag field oflv, thus ensuring that the tag fields arenot modified
after an upcast.

• Assign-Φ checks that all the values being joined at theΦ-node
have the same type as the lvalue being assigned to.

• Seq for sequencing combines the effects sequentially.
• If collects additional facts in the then and else branches: along

the then branch, the new invariant isI ∧ p ensuringp holds;
along the else branch, the invariant isI ∧ ¬p. At the end of
the if statement, these additional facts are removed and there-
sulting invariant is againI . Note that this loses path correlation
information.

• While combines the invariant with the loop condition inside the
body of the loop and throws away the effect of the loop body at
the end.

The SSA form is critical for ensuring that the formulas gathered
in the invariantI are indeed guaranteed to hold before each state-
ment executes [18, 11], thus enabling sound type checking. Though
there are more powerful techniques for generating invariants, the
method we use is highly scalable, essential for a type checker, and
it is syntax-directedthereby giving the programmer a clear spec-
ification of what programs will be accepted by the type system.
Notice that the rules are syntax directed and thus essentially work
by traversing the AST of the program

Derivation Rules: Casts.The key rules are those pertaining to the
casting of lvalues. The lvalue rules check that the access predicate
implies the edge predicate for the corresponding cast (R3). The im-
plication checks, highlighted using boxes, are done using atheorem
prover [9]. For a predicateI and an lvaluelv, we writeI [this/lv]
for the predicate obtained by replacing all occurrences oflv with
this.

• Var-Down allows a downcast only if the current invariant, when
substituted withthis, implies the edge predicate for the down-
cast. The substituted invariant at this point is called theaccess
predicatefor that particular access, and thus, the rule permits
downcasts fromt to t′ only if the access predicate implies the
edge predicateφ(t, t′).

• Var-Up allows an upcast from subtypet′ to typet only if the
renamed invariant implies the edge predicateφ(t′, t). This rule
ensures that after thet′ instance iscreated, at the first point at

which it is cast up to a supertypet, it satisfies the edge predicate.
As the tag fields appearing in the predicate cannot change, and
as only one of the edge predicates of siblings can be true, if at
some point in the future we know that the edge predicate still
holds, then the supertype instance must be the result of an up
cast from at′ instance, and therefore it is safe to cast down to
t′.

• Field-Down and Field-Up are analogous rules for field ac-
cesses.

• Var-Eq andField-Eq handle the explicit trivial casts put into
the program.

Soundness.We can show that a programP ≡ (T,Γ0, s) is type
safe if there exists a predicated subtype hierarchy(T,E, φ) such
that using the rules we can derive the judgmentΓ0, φ, true ⊢ s� ·.
The type soundness theorem states the informal idea that well typed
programs do not have unsafe casts.

THEOREM 1. [Type Soundness]Let P = (T,Γ0, s) be a pro-
gram and(T,E, φ) be a predicated subtype hierarchy. LetΣ (resp.
M) be an arbitrary store (resp. memory) such thatWF(Σ,M,Γ0).
If Γ0, φ, true ⊢ s � · then either(Σ,M,Γ0; s) diverges or
(Σ,M,Γ0; s) →

∗ (Σ′,M ′,W ′; skip) andWF(Σ′,M ′,W ′).

We use the initial typing environmentΓ0 obtained from the
static declarations in a program as the initial RTTI. We exploit the
critical fact, proved in [18], that the invariant carried along in a
judgment is an over-approximation of the set of the program states
before that statement is executed, that is, ifΓ0, φ, true ⊢ s�I then
the invariantI is apostcondition[10] of true w.r.t. to the statement
s.

LEMMA 1. [Invariant Generation [18]] Let P = (T,Γ0, s)
be a program and(T,E, φ) be a predicated subtype hierarchy.
Let Σ (resp.M) be an arbitrary store (resp. memory) such that
WF(Σ,M,Γ0). Let Σ′,M ′,W ′ be such that(Σ,M,Γ0; s) →∗

(Σ′,M ′,W ′; skip). If Γ0, φ, true ⊢ s� I thenΣ′,M ′,W ′ |= I .

The proof of the soundness theorem follows by using induction
on the number of steps of the execution to show that there are no
unsafe downcasts. Recall that each structure that is created is of
a leaf type. Consider the first step at which an unsafe downcast
occurs. Prior to this step, the structure must have been upcast
several times to an (ancestor) supertype that is not a leaf type. The
type system ensures, that for each upcast (a) the edge predicate for
the upcast holds (via the lemma), and, (b) that the fields in the edge
predicate were not modified subsequent to the upcast. Whenever
a downcast fromt to t′ is performed, the disjointness of the edge
predicates ensures that only one of the immediate subtypes’edge
predicates is satisfied. As the fields in the edge predicateφ(t, t′)
were not modified after the structure was previously upcast,it must
have been that at themost recentupcastφ(t, t′) was true, in other
words, the instance being upcast was in fact of typet′. Thus, as
at the downcast point, our type system ensures (using the lemma),
thatφ(t, t′) still holds, the structure can indeed be safely downcast
to t′.

EXAMPLE 1: We will show that the downcast at line5 in Fig-
ure 1 is safe. The type declarationΓ0 mapsicp, type anddest
to packet, int andint respectively. At statement 3, the assign-
ment and variable access rules are applied, and the casts aretriv-
ial, so no implication checks are done, but the invariantI be-
comesicp.icmp type = type. We apply the conditional rule
for statement4; inside the then branch,I4 is (icp.icmp type =
type) ∧ (type = 5). In statement5, there is a downcast from
packet to redirect). To check the safety of this downcast, we
use theVar-Down rule onicp using the access predicate obtained

from I4 by substitutingicp with this, and check the validity of:

(this.icmp type = type∧type = 5) ⇒ (this.icmp type = 5)

As the theorem prover tells us this implication is valid, we conclude
that the downcast at5 is safe. 2

5. Type Inference via Interpolation
In the previous section, we assumed that we weregivena predicated
refinement of the subtype hierarchy with which the program could
be type checked to ensure statically that all downcasts weresafe.
In practice, these annotations are not available. We now present an
algorithm that given a program and the subtype hierarchy,automat-
ically infersa predicated refinement of the hierarchy such that the
program type checks, if indeed the program is type safe. In other
words, given a program(T,Γ0, s), the inference algorithm com-
putes an edge predicate mapφ that satisfies conditionsR1-R4 or
reports that no such map exists,i.e., the program is not type safe.

To find the predicate mapφ, we introduce for each edge(t, t′) in
E a predicate variableπt,t′ . Next, using the syntax-directed type
checking rules, we generate a set ofpredicate constraintson the
predicate variables, such that a solution for the constraints will give
us edge predicates that satisfy the three requirements. Finally, we
describe how to solve the constraints and thus inferφ.

5.1 Generating Predicate Constraints

We use the syntax-directed typing rules of Figure 4 to generate
the predicate constraints. The constraint generation is done in two
phases.

In the first phase, we make a syntax-directed pass over the
program to compute the set of fields thatcannot be tag fields
because they are modifiedafter an upcast. This information is
captured by computing a maptag(t) from typest to the sets of
fields that cannot be used in the edge predicates for edges(t, ·). We
start with an initial map corresponding to the empty set for all types
t. Next, we do the type checking without making the implication
queries at the casts (as there is noφ). Instead, at each occurrence
of theField-Assign rule (Figure 4), we add the fieldl to tag(t′′),
for all t′′ � t′, i.e., all subtypes oft′. Intuitively, the assignment
implies that no such field can be used to distinguish which of the
subtypes oft′ the structure is at runtime. At the end of this phase,
all the fields that cannot be tag fields oft are in the settag(t).

In the second phase, we make another syntax-directed pass
using the type checking rules to compute the invariants at each
access point. For a predicateI and a set of field namesF , and
a locations, define rename(I, F, s) as the predicate where all
occurrences of free variablesx other thanthis are substituted
with a fresh namexs and all occurrences of field namesl ∈ F
are substituted with a fresh namels. At each downcast and upcast
locations, i.e., where one of the rulesVar-Down, Field-Down,
Var-Up andField-Up (Figure 4) applies, instead of checking that
the access predicateI [this/lv] implies the edge predicate for the
cast, we introduce a predicate constraint:

rename(I [this/lv], tag(t), s) ⇒ πt,t′

We call the LHS of the constraint above therenamed access
predicateat locations. The renaming does not get in the way of
inferring appropriateφ as the fields intag(t) cannot appear in
φ(t, t′). Instead, as we shall see, it will force the inferred predicates
to not contain the fields intag(t), thus yielding aφ that suffices
to type check the program, if one exists. Given a programP ≡
(T,Γ0, s), letCons(P) be the set of predicate constraints generated
by the algorithm described above.

Recall that by our assumption that the only upcasts and down-
casts in the program are between immediate subtypes. Thus, the

Γ(x) = t t′ ≺ t I[this/x] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t′)x : t′
Var-Down

Γ, φ, I ⊢l lv : s{·, (l, t), ·}

t′ ≺ t I[this/lv] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t′)lv.l : t′
Field-Down

Γ(x) = t′ t′ ≺ t I[this/x] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t)x : t
Var-Up

Γ, φ, I ⊢l lv : s{·, (l, t′), ·}

t′ ≺ t I[this/lv] ⇒ φ(t, t′)

Γ, φ, I ⊢l (t)lv.l : t
Field-Up

Γ, φ, I ⊢l lv : t

Γ, φ, I ⊢l (t)lv : t
Lval-Eq

(a) Lvalues

Γ, φ, I ⊢e New(t) : t
New

Γ, φ, I ⊢l lv : t

Γ, φ, I ⊢e lv : t
Lval

Γ, φ, I ⊢e e1 : int Γ, φ, I ⊢e e2 : int

Γ, φ, I ⊢e e1 ⊕ e2 : int
Aop

Γ, φ, I ⊢e e1 : t Γ, φ, I ⊢e e2 : t

Γ, φ, I ⊢e e1 = e2 : bool
Eq

Γ, φ, I ⊢e e1 : int Γ, φ, I ⊢e e2 : int

Γ, φ, I ⊢e e1 ∼ e2 : bool
Acomp

(b) Expressions and booleans

Γ, φ, I ⊢ skip � I
Skip

Γ, φ, I ⊢e e : t Γ, φ, I ⊢l (t)x : t

Γ, φ, I ⊢ (t)x := e� I ∧ (lv = e)
Var-Assign

Γ, φ, I ⊢e e : t Γ, φ, I ⊢e (t)lv.l : t
Γ′, φ, I ⊢l lv : t′ l 6∈ tag(t′, φ)

Γ, φ, I ⊢ (t)lv.l := e� I ∧ (lv.l = e)
Field-Assign

Γ, φ, I ⊢l lvi : t for all i Γ, φ, I ⊢l lv : t

Γ, φ, I ⊢ lv := Φ(lv1, . . . , lvn) � I
Assign-Φ

Γ, φ, I ⊢ s� I′ Γ, φ, I′ ⊢ s′ � I′′

Γ, φ, I ⊢ s; s′ � I′′
Seq

Γ, φ, I ⊢e p : bool
Γ, φ, I ∧ p ⊢ s� I′ Γ, φ, I ∧ ¬p ⊢ s′ � I′′

Γ, φ, I ⊢ if p then s else s′ � I
If

Γ, φ, I ⊢e p : bool Γ, φ, I ∧ p ⊢ s� I′

Γ, φ, I ⊢ while p do s� I ∧ ¬p
While

(c) Statements

Figure 4. Type checking rules. Hypotheses in boxes correspond to
queries to the decision procedure made in the checking phase, or
the predicate constraints in the inference phase.

constraint generation introduces predicate constraints for πt,t′ for
edges(t, t′) ∈ E.

EXAMPLE 2: The constraint generated from the downcast on line
05 in Figure 1(a) is:

(type05 = this.icmp type ∧ type05 = 5) ⇒ πpacket,redirect

Similarly, the downcasts on line09 and12 generate constraints:
(type09 = this.icmp type ∧ type09 6= 5 ∧ type09 = 12) ⇒ πpacket,param

(type12 = this.icmp type ∧ type12 6= 5 ∧ type12 6= 12 ∧ type12 = 3)

⇒ πpacket,unreach

Notice that the substitution renamesicp to this and renames the
variabletype in each constraint. 2

Solutions.A solutionto a set of constraintsCons(P) is a mapping
Π from each predicate variableπt,t′ to a predicate such that:

S1 For each predicate variableπt,t′ , the predicateΠ(πt,t′) has a
single free variablethis,

S2 For each triplet, t′, t′′, the predicatesΠ(πt,t′) and Π(πt,t′′)
are inconsistent,

S3 For each constraintψs ⇒ πt,t′ in Cons(P), the implication
ψs ⇒ Π(πt,t′) is valid, and,

S4 For eacht, t′, the predicateΠ(πt,t′) should not contain any
field name intag(t).

Every solutionΠ for the set of constraintsCons(P), yields a
predicated subtype hierarchy forP with which we can prove the
safety ofP .

THEOREM2. [Soundness of Constraint Generation]For every
program P ≡ (T,Γ0, s), if Π is a solution for the constraints
Cons(P) then

φ ≡ λ(t, t′).Π(πt,t′)

is such that:Γ0, φ, true ⊢ s� ·.

The theorem follows by observing thatS1, S2, andS4enforce
that requirementsR1, R2 and R4 of the edge predicate mapφ
are met, and conditionS3 ensuresR3, i.e., that the resultingφ is
such that the implications required for type checking are valid.
The predicated type system we have described does not have a
principal typing property. Consider a structure with a tag field t
and two physical subtypes with fieldsf1 andf2. If f1 is accessed
only whent = 0, andf2 is accessed only whent = 5, then both
(t ≤ 2, t > 2) and(t ≤ 1, t > 1) are predicate refinements, but
neither subsumes the other.

5.2 Solving Predicate Constraints

We now give an algorithm to find a solution to a set of constraints
Cons(P) if one exists. First, we define for each edge(t, t′) ∈ E a
cast predicateψ(t, t′) as:

ψ(t, t′) ≡
_

ψs⇒π
t,t′

∈Cons(P)

ψs

The cast predicate for an edge is the disjunction over all there-
named access predicatesψs for the locations where at is downcast
to t′ or at′ is upcast tot. Note that by the properties of disjunction
and implication, a mapΠ from the type variables to predicates is
a solution for the constraintsCons(P) iff it satisfies conditionsS1,
S2andS4, and in addition

S3’ For each(t, t′) we haveψ(t, t′) ⇒ Π(πt,t′).

For eachψs ⇒ πt,t′ we haveψs ⇒ ψ(t, t′) as the RHS cast predi-
cate is the disjunction of all the corresponding access predicatesψs.
Thus, by the properties of disjunction and implication, anysolution
Π satisfies requirementS3’ iff it satisfiesS3.

Existence of a Solution.A solution can only exist if for each triple
t, t′, t′′, the conjunctionψ(t, t′) ∧ ψ(t, t′′) is unsatisfiable. If not,
i.e., if there aret, t′, t′′ such that:ψ(t, t′) ∧ ψ(t, t′′) is satisfiable,
then for any candidate solution such thatψ(t, t′) ⇒ Π(πt,t′)
andψ(t, t′′) ⇒ Π(πt,t′′), the conjunctionΠ(πt,t′) ∧ Π(πt,t′′)
is satisfiable, thus violatingS2. Intuitively, if the conjunction of
the cast predicates fort′, t′′ is satisfiable, it means that there is
some condition under which the program casts to (or from) type
t′ as well as to (or from)t′′ thus one of those casts may be unsafe,
or depends on a modified fieldi.e., a field in tag(t). In this case,
the type inference fails with an error message pointing out the two
conflicting casts.

Constraint Solving via Interpolation. Dually, we show that if
for each triplet, t′, t′′ the cast predicatesψ(t, t′) andψ(t, t′′) are
inconsistent, then we can infer a solution to the constraints, and
thus a predicated subtype hierarchy that suffices to type check
the program. We construct the solution using a variant of Craig
Interpolation [5]. Recall from Section 3.2, that given a sequence
of predicatesA1, . . . , An such that for alli, j, the predicateAi ∧
Aj is unsatisfiable, apairwise interpolantfor the sequence is the
sequenceÂ1, . . . , Ân ≡ ITP(A1, . . . , An) satisfying conditions
I1,I2, andI3.

For each nodet ∈ T with immediate subtypest1, . . . , tn, we
define:

Π(t, t1), . . . ,Π(t, tn) ≡ ITP(ψ(t, t1), . . . , ψ(t, tn))

The properties of pairwise interpolants suffice to show thatΠ is
indeed a solution to the constraintsCons(P). The only variable
common toψ(t, t1), . . . , ψ(t, tn) is this and hence, byI1 each
Π(t, t′) contains the sole free variablethis, thus enforcing re-
quirementS1. In addition, as we renamed all the fields intag(t),
there is no field name intag(t) that is in anyψ(t, t′) and thusΠ
meets conditionS4. PropertyI2 of interpolants ensure requirement
S2. Finally, propertyI3 of interpolants ensures requirementS3’ and
hence,S3.

By Theorem 2, we have inferred an edge mapφ and thus, a
predicated subtype hierarchy that suffices to show that all casts are
safe. The inference algorithm runs in time linear in the number of
constraints, and thus, the program, and makes a linear (in the size
of T) calls to an interpolating decision procedure.

Algorithm 1 PredTypeInference

Input: ProgramP = (T,Γ0, s)
Output: Refinement(T,E, φ) or ERROR
E = edges induced by� onT
C = Cons(P)
for all (t, t′) ∈ E do
ψ(t, t′) = ∨{ψs | ψs ⇒ πt,t′ ∈ C}

for all t ∈ T with immediate subtypest1, . . . , tn do
if ψ(t, t1) ∧ . . . ∧ ψ(t, tn) is unsatisfiablethen
φ(t, t1), . . . , φ(t, tn) := ITP(ψ(t, t1), . . . , ψ(t, tn))

else
return ERROR

return (T,E, φ)

We summarize the predicated type inference algorithm
PredTypeInference in Algorithm 1. The correctness of the algo-
rithm is stated in the following theorem.

THEOREM 3. [Correctness of Type Inference] For every pro-
gram P ≡ (T,Γ0, s), PredTypeInference(P) terminates. If
PredTypeInference(P) returns(T,E, φ) thenΓ0, φ, true ⊢ s� ·.
If PredTypeInference(P) returnsERROR then there is noφ such
thatΓ0, φ, true ⊢ s� ·.

EXAMPLE 3: For the constraints from Example 2, we get the cast
predicates:
type05 = this.icmp type ∧ type05 = 5

type09 = this.icmp type ∧ type09 6= 5 ∧ type09 = 12

type12 = this.icmp type ∧ type12 6= 5 ∧ type12 6= 12 ∧ type12 = 3

corresponding toψ(packet, redirect), ψ(packet, unreach)
andψ(packet, param), respectively. Note that the only common
names arethis and the allowed fields. The pairwise interpolant
of these predicates yields the edge predicates:this.type = 5,
this.type = 12 andthis.type = 3 respectively. 2

6. Implementation and Experiences
We have implemented the predicated type inference algorithm for
C. Our tool uses CIL [23] to parse and manipulate the C program,
and the theorem prover FOCI [22] to generate interpolants and
check implications at cast locations. Our tool follows Algorithm 1
and focuses on the safety of union accesses and explicit casts on
fields. Also, our tool extends the invariant generation to handle
pointers and functions. Further, although our type system mimics a
common C idiom, there are cases where this idiom is not followed.
Our system gracefully handles these issues by giving a best effort to
generate predicate edges when programmers follow the idiomand
by identifying cases where programmers do not follow the idiom.

6.1 Implementation Issues

We create a subtyping hierarchy to model union accesses as casts.
We add types representing each field in an union. If a structure t
contains a uniont.u with fieldsfi, we create a immediate subtype
t′i representing the same structuret but only allowing access to
t.u.fi. In the implementation, access to the union fieldt.u.fi is
the same as a downcast fromt to t′i.

We extend the invariants generation algorithm as describedpre-
viously with pointers and functions. We shall informally describe
our technique. For pointers, we run an flow-insensitive aliasing
analysis and replace all pointer accesses with abstract locations
guarded by predicatesi.e., if a pointerp may point toa or b, we
replace*p = 5 with if (p = &a) a = 5 else if (p = &b)
b = 5. In Figure 4, the typing rules (Var-Assign, Field-Assign,
Assign-Φ, If, While) conjoin predicates from the start of the sur-
rounding function. However, some functions that access a specific
union field are only called when a predicate check has been per-
formed at the call site. We have a parameter that specifies thedepth
of the disjunction of invariants derived from all callsites. For func-
tions being called in the surrounding function, we inline those func-
tions based on another depth parameter.

Resolving Conflicts.We say that two cast instancesconflict if they
are casts from the same supertype to different subtypes, such that
the conjunction of the access predicates at the two locations are
satisfiable. As discussed in Section 5, if this happens, our algo-
rithm cannot find a predicated refinement of the subtype hierarchy
that suffices to check the program is correct. Conflicts ariseeither
because there is no predicated refinement for that specific cast, or
because our invariant generation is too weak.

In order to get useful results even in the presence of conflicts,
we extend the algorithm for inference described in Section 5, by
using heuristics to greedily restrict the set of access predicates to
those that do not conflict with downcasts to different subtypes. We
found in our experiments that despite conflicts, out of a total of 90
edge predicates that could be discerned by a close manual inspec-
tion, our implementation was able to infer 80 predicates correctly
(i.e., 89% of the edge predicates were correctly inferred). When-
ever our method found an edge predicate, it was, in all cases but
one, exactly the one that was revealed by close manual inspection.

Predicate Edges Accesses
Program LOC Inferred Actual Predicated Other Conflicts Time
ip icmp 7K 7 7 15 7 1 1s
xl 12K 8 8 428 0 200 875s
moapsource 14K 3 3 5 6 2 1s
gdkevent 16K 12 13 90 5 31 38s
lua 18K 13 15 274 8 130 151s
snort 42K 7 7 26 120 0 12s
sendmail 106K 17 24 406 17 138 995s
ssh 35K 0 0 0 2105 0 12s
bash 101K 13 13 440 3914 162 1157s
Total 351K 80 90 1684 6182 664 3242s

Table 1. Experimental Results:LOC is lines of code.Time is the number of seconds spent on inference.Predicate Edgesis the number
of predicated edges in the predicated subtype hierarchy.Inferred is the number such edges for which our tool inferred an edge predicate,
andActual is the number of edges constructed by manual inspection of the code.Accessesgives the number of syntactic cast points in the
program. Among these,Predicatedis the number of predicated accesses andOther is the number of other accesses.Conflicts is the number
of conflicts.

Figure 5. Predicate subtype hierarchy for (a)gdkevent (b)lua

We also have heuristics identifying downcast edges that do not have
predicates. For the case where programmers do not use downcast
edges with predicates, our tool identified all 131 such edges. All
these edges were manually confirmed to have no edge predicates.
Our results show that by identifying these conflicts and by not in-
cluding those access predicates in our inference, we infer the ma-
jority of correct edge predicates. The heuristics to identify conflicts
are described in Section 6.2 and a more detailed breakdown ofcon-
flicts is shown in Section 6.3.

6.2 Experimental Results

We have used our tool to investigate nine open source programs.
ip icmp is the ICMP implementation in the FreeBSD kernel.
moapsource is the packet processing code of Emstar, a sensor net-
work development tool.gdkevent is how events are encoded in
the GDK graphics library.lua is a dynamically typed language in-
terpreter.snort is an opensource intrusion detection tool.xl is a
small lisp interpreter from the SPEC benchmarks.ssh is the widely
used secure shell client.bash is the Bourne Again shell.sendmail
is the Sendmail email server.

We summarize our results in Table 1. Our experiments were
all run on a Dell PowerEdge 1800 with two 3.6Ghz Xeon proces-
sors and 5 GB of memory. All experiments except formoapsource
were run without inlining functions.moapsource required look-

ing at one level of callers to generate sufficiently precise invari-
ants. Our algorithm identified 1,684 downcasts requiring predicate
guards. These accesses were determined by a predicated subtyping
hierarchy of 90 edges. We were able to infer 77 predicate edges
corresponding to union fields correctly. We also correctly inferred
the 3 predicate edges corresponding to explicit C type castsin
moapsource.

The only case involving explicit predicated casts occurredin
moapsource. Packets are encapsulated within other packets. These
packets contain a header that contains an 8 bit field that identifies
the next header type. The next header is explicitly cast to the right
header subtype.

Our tool can derive complex predicated subtyping hierarchies.
Figure 5 shows the two partial predicated subtyping hierarchies for
gdkevent andlua. Some subtypes are dropped because of space.
The subtypes shown are representative of the output of our tool. We
show that predicate edges are not simply single tag assignments but
rather more complex predicates involving ranges.

In gdkEvent, checking the type of an event can be done by
looking at thetype field in theGdkEventAny union field or the
type union field. In Figure 5(a) we use thetype union field to
distinguish accesses. Our tool handles this by knowing thatthe
type field in theGdkEventAny and thetype union field represent
the same location in memory. Edges are disjunctions of tag values,

i.e. to access thecrossing field, the type field must be 10 or
11. Also, just an= operator is not enough aslua requires the≥
operator as seen from the access of thegc field.

Conflicts and Bugs. Recall there are two sources of conflicts:
downcasts on edges for which no predicate could be inferred,and
downcasts on edges where a predicate was inferred, but wherethe
access predicate invariant was not strong enough to establish the
edge predicate, either because the inferred invariant was too weak,
or because there is a bug.

For the first case, we used the following heuristic to determine
which edges have no predicates. Given a type node, ifall downcast
instances of an outgoing downcast edge conflict with all downcast
instance of any other outgoing cast edge, then it is likely that
type node has no predicated downcasts. Using this heuristic, our
tool inferred 84 unions types and explicit casts of 47 different
fields corresponding to the 6,182 accesses as not having downcast
predicate edges. We then manually confirmed that for every one of
these edges, there was no downcast predicate.

For the second case, when the access predicate was not strong
enough to imply the edge predicate, the downcast instance typically
conflicted with many other downcast instances. To facilitate faster
identification of possible bugs, the downcasts that conflictthe most
with others are presented first. In such cases, the programmer forgot
to check the predicate before the access, leaving the possibility of
an unsafe access. For example, there are 23 cases in Lua where
two different variables are assumed to have the same predicate
hold. A union field in one of those variables is accessed afterthe
appropriate predicate is checked for thatstruct. However, the
same union field in the other variable is also accessed without
checking if the appropriate predicate holds on thatstruct as well.
In these 23 cases, there is an assumption that two different variables
always have the same predicate hold. Although our tool presents
conflicting statements, we have not fully investigated thistool as a
bug finder.

6.3 Limitations

Table 1 also summarizes how often predicated guarded accesses
and downcasts are used. Although we found that 1,633 casts cor-
responding to union field accesses and 46 on explicit casts can be
described by our type system, there were 6,182 access that did not
follow our idiom. The majority of these accesses (6,018 of them)
occurs when unions are used to simplify memory access. Our sim-
ple heuristic from the last section correctly distinguishes all such
accesses from predicated casts. The remaining 164 accesseseither
required a predicate over other lvalues as opposed to just fields of
the downcasted lvalue, or required stronger invariants than the ones
generated by our type system.

1. Overlapping Layout. For 6,018 conflicting accesses, program-
mers used unions to easily access memory locations. For example,
in the header filein6.h (used inicmp andssh) we saw the follow-
ing structure:

struct in6_addr {
union { uint8_t u6_addr8[16];

uint16_t u6_addr16[8];
uint32_t u6_addr32[4];

} in6_u;
};

In this case, the union is just a sequence of several bytes andthe
union fields are used to access bytes at different offsets safely.

Memsets.Thememset macro is a more complex example of this.
3,886 union accesses involved thememset macro.Memset is a
widely used macro that takes three parametersn, c, s, and setsn
bytes to some characterc starting at memory addresss. The macro
is implemented by the use of an anonymous union. Each use of

memset causes a new anonymous union, leading to 3,886 non-
predicated downcasts inbash.

2. External Correlation. Some union field accesses or explicit
casts depend on a wide range of variables, limiting the predicate
over fields of a single data structure is not sufficient. We found a
few cases where the union accesses were safe, but the reason for
safety could not be expressed within our type system. For 3 union
fields, we found that there were edge predicates for the unionthat
used variables belonging to a different structure, and thuscould not
be expressed usingthis. We believe that most of the 20 down-
cast predicate edges involving explicit casts fall in this category. In
future work we intend to look at ways to infer this external cor-
relation and “pack” the other structure together with the structure
containing the downcasted field in order to be able to extend our
technique to this setting. In thebh benchmark from the Olden suite
(not shown in the Table), we found that the reason for safety de-
pended not on other fields, but on thecontrol location. In different
phases of execution, the program was in different locations, and the
value in the union is directly correlated to the phase and hence the
program location. Inssh we found a variant of this, where there
were many conflicts involving theciphercontext union, which
includes different types of ciphers as fields. Different encryption
and decryption functions choose the appropriate element ofthe
union without establishing any edge predicate because an external
global data structure ensures that the function pointers correspond-
ing to the encryption and decryption functions are correlated with
the field inside the ciphertext union.

3. Operation Ordering. In our imperative language,S4 specifies
that predicates must be over fields that have not been modified.
In C programs, this constraint is relaxed. Fields in predicates are
modified when a data structure is being created. These fields are
usually sequentially written to. Our type system assumes that the
assignments to the tag fields (i.e., the fields appearing in the edge
predicate) are done, thus establishing the edge predicates, before
the structure is cast. However, in the example of Figure 1, the
programmer may create aredirect message, and assign to the
ih gwaddr, andafter that, write the appropriate value in the tag
field icmp type indicating which union subtype the structure had.
Thus, when theih gwaddr field was accessed, the edge predicate
did not hold as it was established afterward, thus leading toa
spurious conflict. Such code is easily modified to make it passour
type checker, simply by moving the tag assignment.

4. Invariant Imprecision. Many conflicts arose because even
though we inferred the correct edge predicates, the algorithm de-
scribed that accumulates the dominating statements as invariants
did not generate invariants strong enough to imply the edge predi-
cates. Though the presented algorithm is fast and scalable,many
complexities in the program cause it to not always be precise
enough. These include aliasing, the need for loop invariants, dy-
namic data structures, and interprocedural reasoning. Forthe few
cases where our invariants are too weak, more precise safetyan-
alyzers such as BLAST [17], ESC [13], and TVLA [26] can be
used to statically verify that the edge predicates hold at the cast
points, or alternatively, dynamic checking can be insertedto ensure
type-safety at runtime [24, 12, 21].

7. Conclusions
We have presented a dependent type system for the verification of
union accesses, and an algorithm based on Craig Interpolation to
infer the dependent refinements, thereby yielding a fully automatic
way to check the safety of union accesses. Our type system captures
the common idiom where the programmer checks tag fields before
accessing data in a union, and is able to infer the tag fields aswell
as the protocol used by the programmer to ensure safety. Though

we could instantiate our approach with more advanced invariant
generation techniques like abstract interpretation (to compute the
cast predicates), our experiments demonstrate that for most cases,
our simple syntax-directed invariants suffice to determinehow the
programmer ensures the safety of union accesses, almost always
inferring exactly the same type as that found by a close manual
inspection of the code. In places where the inferred edge predicate
cannot be statically proven to hold, we can use the edge predicate
to insert runtime checks, without modifying the program to insert
fields carrying type information. In future work, we shall generalize
the technique with parameterized invariant generation schemes,
consider more expressive dependent type formalisms that let us
capture external correlations, and extend our predicate subtype
approach to statically verify the safety of other kinds of downcasts,
for example in Object Oriented code.

Acknowledgements.We thank Todd Millstein and Pat Rondon for
carefully reading drafts and providing valuable feedback.

References
[1] A. Aiken, E. Wimmers and T.K. Lakshmam. Soft typing with

conditional types. InPOPL 94, pp. 163–173. ACM, 1994
[2] S. Artzi and M.D. Ernst. Using predicate fields in a highlyflexible

industrial control system. InOOPSLA 05, pp. 319–330. 2005.
[3] T. Ball and S.K. Rajamani. The SLAM project: debugging system

software via static analysis. InPOPL 02, pp. 1–3. ACM, 2002.
[4] S. Chandra and T. Reps. Physical type checking for c. InPASTE 99,

pp. 66–75. ACM, 1999.
[5] W. Craig. Linear reasoning.J. Symbolic Logic, 22:250–268, 1957.
[6] S. Cui, K. Donnelly, and H. Xi. ATS: A language that combines

programming with theorem proving. InFroCos 05, LNCS 3717, pp.
310–320. Springer, 2005.

[7] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.Zadek.
Efficiently computing static single assignment form and theprogram
dependence graph.ACM TOPLAS, 13:451–490, 1991.

[8] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program
verification in polynomial time. InPLDI 02, pp. 57–68. ACM, 2002.

[9] D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theoremprover for
program checking.J. ACM, 52(3):365–473, 2005.

[10] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976
[11] Y. Fang. Translation validation of optimizing compilers. PhD thesis,

New York University, 2005.
[12] C. Flanagan. Hybrid type checking. InPOPL 06, pp. 245–256. ACM

Press, 2006.
[13] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and

R. Stata. Extended static checking for Java. InPLDI 02, pp. 234–245.
ACM, 2002.

[14] J.S. Foster, T. Terauchi, and A. Aiken. Flow-sensitivetype qualifiers.
In PLDI 02, pp. 1–12. ACM, 2002.

[15] M. Furr and J. Foster. Checking type safety of foreign function calls.
In PLDI 05, pp. 62–72. ACM, 2005.

[16] M. Harren and G.C. Necula. Using dependent types to certify the
safety of assembly code. InSAS 05, LNCS 3672, pp. 155–170.
Springer, 2005.

[17] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. InPOPL 02, pp. 58–70. ACM, 2002.

[18] R. Jhala, R. Majumdar, and R. Xu. Structural InvariantsIn SAS 06,
Springer, 2006.

[19] T. Jim, J.G. Morrisett, D. Grossman, M.W. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InUsenix, pp. 257–288. 2002.

[20] R. Komondoor, G. Ramalingam, S. Chandra, and J. Fields.Dependent
Types for Program Understanding. InTACAS 05, LNCS 3440, pp.
157–173. Springer, 2005.

[21] A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debugging via run-
time type checking. InFASE 01, LNCS 2029, pp. 217–232. Springer,
2001.

[22] K.L. McMillan. An interpolating theorem prover.Theor. Comput.
Sci., 345(1):101–121, 2005.

[23] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation of
C programs. InCC 02, LNCS 2304, pp. 213–228. Springer, 2002.

[24] G.C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: type-safe retrofitting of legacy software.ACM TOPLAS,
27(3):477–526, 2005.

[25] J.M. Rushby, S. Owre, and N. Shankar. Subtypes for specifications:
Predicate subtyping in PVS.IEEE TSE, 24(9):709–720, 1998.

[26] S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic.ACM TOPLAS, 24(3):217–298, 2002.

[27] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping
with type casts in C. InESEC/FSE 99, pp. 180–198. ACM, 1999.

[28] H. Xi. Imperative programming with dependent types. InLICS 00,
pp. 375–387. IEEE, 2000.

[29] H. Xi and R. Harper. A dependently typed assembly language. In
ICFP 01, pp. 169–180. ACM, 2001.

[30] H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL 99, pp. 214–227. ACM, 1999.

